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ABSTRACT 

The results of research performed by the Information and Control 

Laboratory of Stanford Research Institute for the Electronics Research 

Center of the National Aeronautics and Space Administration on Contract 

NAS12-59 from 1 October 1966 to 30 September 1967 are described in this 

Final Report. The research program has investigated the control and 

tracking problems associated with an optical communication system operating 

between the earth and a spacecraft in the vicinity of Mars. For the 

system configuration studied, mathematical models of all system components 

are developed including the relative motion of the two communication termi- 

nals, the dynamics of the earth-terminal receiving telescope, the optical 

propagation properties of the atmosphere and free space, and a statistical 

description of the optical and mechanical measuring devices used to ob- 

tain control or output data from the system. 

Two design approaches to this problem are taken. The first, which is 

based on results from optimal linear estimation and control theory, results 

in the estimator-controller configuration. The second design employs 

classical servo theory and yields the autotracker system. The optical 

communication and tracking system, employing either the estimator-controller 

or  the autotracker, was simulated by means of a digital computer. In 

addition to assessing the relative performance of these two system de- 

signs, computer simulations were also used to evaluate performance sensi- 

tivity to such parameters as the magnitude of atmospheric interference and 

iteration time for the computations. 

The simulation tests demonstrate that although, for nominal environ- 

mental conditions, both the estimator-controller and the autotracker per- 

form satisfactorily, the estimator-controller is able to maintain 

satisfactory performance under conditions that render the autotracker 

unusable . 
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On t h e  bas i s  of r e s u l t s  obtained during t h i s  research  pro jec t ,  it 

can be concluded that  it is  wi th in  the capab i l i t y  of present  technology 

t o  implement a deep-space o p t i c a l  communication system that w i l l  provide 

a s i g n i f i c a n t  increase  i n  data  rate over present ly  used techniques. 
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I INTRODUCTION 

A s  t he  t a sks  t o  be performed by o r b i t a l  and in t e rp l ane ta ry  space- 

c r a f t  become more complex, the  communication capaci ty  required between 

the  spacecraf t  and the  e a r t h  increases  rap id ly .  For deep-space probes 

present ly  being considered, t h i s  communication requirement exceeds the  

capab i l i t y  of present  or an t i c ipa t ed  R F  communication systems. The 

recent  development of l a se r s ,  however, makes p r a c t i c a l  the  use of l i g h t  

a s  the  c a r r i e r  f o r  long-range, high-data-rate communication systems.  

The extremely narrow beamwidth of l a s e r s  permits the  concentrat ion of 

t ransmi t ted  energy on a d i s t a n t  receiver, while the  high frequency of 

l i g h t  t o  1015 H z )  permits very broad-band s igna l  modulation; both 

a r e  des i r ab le  f e a t u r e s  of a space communication system. In addi t ion  t o  

the  communication capab i l i t y  of an o p t i c a l  system, t he  narrow beamwidth 

p e r m i t s  g r e a t l y  increased reso lu t ion  and accuracy i n  measuring the  

t racking  angles  t o  d i s t a n t  ob jec ts .  This upgraded t racking data permits 

real-t ime o r b i t  determinations t h a t  a r e  more accura te  than those ob- 

t a inab le  v i a  conventional RF  t racking techniques, p a r t i c u l a r l y  f o r  

vehic les  near  t h e  e a r t h .  

The extremely narrow t r ansmi t t e r  beamwidths and rece iver  f i e l d s  of 

view ( i n  the  order  of 0 . 1  a r c  second or l e s s )  t h a t  a r e  necessary t o  

r e a l i z e  e f f i c i e n t  operat ion of an o p t i c a l  communication system d i c t a t e  

t h a t  t he  con t ro l  systems employed t o  point  t he  t r ansmi t t e r s  and re- 

ce ive r s  be capable of producing an unprecedented l e v e l  of accuracy 

and prec is ion .  

the  e n t i r e  system, from concept and configurat ion t o  d e t a i l e d  spec i f ica-  

t i o n  of op t i ca l ,  mechanical, and e l e c t r o n i c  components, must be designed 

with t h i s  high-precision goa l  i n  mind. During the  pas t  year  the  

Information and Control Laboratory of Stanford Research I n s t i t u t e ,  under 

the  sponsorship of NASA Elec t ronics  Research Center, has been inves t i -  

ga t ing  t h e  app l i ca t ion  of modern cont ro l  technologies t o  achieving the  

t racking accuracy and prec is ion  required by an o p t i c a l  communication 

system. To lend s t r u c t u r e  t o  the  research p ro jec t  severa l  earth-to-deep 

To achieve the  required leve ls  of accuracy and precis ion,  
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* 
space communication system configurat ions w e r e  considered.' 

cooperative system configurat ion (see Memorandum 8, Sec. 11-A), s i nce  

it appears a t  present  t o  be the most promising candidate for an a c t u a l  

system design, was se l ec t ed  f o r  fu r the r ,  more d e t a i l e d  study and i s  de- 

scribed i n  Sec. I1 of t h i s  r epor t .  This included spec i f i ca t ion  of the  

configurat ion and establishment of mathematical models f o r  both the 

e a r t h  terminal  and the spacecraf t  terminal  of the  communication system, 

a s  w e l l  a s  a s ta t is t ical  descr ip t ion  of the propagation environment and 

the  measurement system. W i t h  these  spec i f i ca t ions ,  the  problem of con- 

t r o l  system synthes is  was undertaken. Due t o  the atmosphere the e a r t h  

terminal represents  a much more d i f f i c u l t  t rack ing  and cont ro l  problem; 

hence, primary emphasis was devoted t o  the  design and evaluat ion of a 

cont ro l  sys t em f o r  t h i s  terminal.  Two approaches w e r e  taken t o  the  

design of a t racking  con t ro l  system: i n  Sec. I11 the  r e s u l t s  of optimal 

l i n e a r  es t imat ion  and con t ro l  theory are appl ied  i n  the  system design; 

i n  Sec. IV,  f o r  purposes of comparison, an au to t racker  cont ro l  system 

was a l s o  synthesized using conventional design techniques.  Both of these 

system designs w e r e  simulated by means of a d i g i t a l  computer and t h e i r  

performance compared under s i m i l a r  opera t iona l  conditions.  

The 

This F ina l  Report, covering the  yea r ' s  work, presents  the  mathemati- 

c a l  analyses  and the  r e s u l t s  of t he  s imulat ion s t u d i e s  performed. The 

analyses  are presented i n  summary form so a s  t o  make t h i s  repor t  a com- 

p l e t e  record of t h e  e n t i r e  y e a r ' s  p ro jec t ;  f o r  t h e  de t a i l ed  analyses  the  

reader  is re fe r r ed  t o  the technica l  memoranda and qua r t e r ly  r e p o r t s  

i s sued  during the  course of t he  p ro jec t .  In  addi t ion,  a complete dis-  

cussion of t he  r e s u l t s  of t he  computer s imulat ions is included i n  Sec. V.  

The computer program that was developed on t h i s  pro jec t ,  toge ther  

with the  complete documentation according t o  NASA spec i f ica t ions ,  has 

been forwarded t o  the  Elec t ronics  Research Center. T h i s  program simulates  

the  operat ion of the es t imator -cont ro l le r  configuration, which i s  

* 
References are l i s t ed  a t  t h e  end of t he  repor t .  
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described i n  Sec. 111, and a conventional autotracker ,  which is  described 

i n  Sec. IV, wi th in  an  o p t i c a l  communication and t racking  system. 
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I1 SYSTEM CONFIGURATION 

A.  Spacecraft  Terminal 

The cont ro l  of the  spacecraf t  terminal  e n t a i l s  two d i s t i n c t  functions: 

(1) t racking  of the s igna l  incoming from e a r t h  t o  maintain co r rec t  a l ign-  

ment of the  spacecraf t  receiving te lescope,  and ( 2 )  o f f s e t t i n g  of the  

t r ansmi t t e r  a x i s  from t h e  r ece ive r  a x i s  t o  compensate f o r  the  r e l a t i v e  

motion of t he  e a r t h  and the spacecraf t  during the roundtr ip  t r a n s i t  t i m e  

of the  o p t i c a l  s igna l .  Considering the second, and s impler ,  of these  t w o  

funct ions,  i t  has been s t a t e d  t h a t  the  maximu-rh angular  o f f s e t  (point-  

ahead angle)  required between the  t r ansmi t t e r  and rece iver  a x i s  i s  l e s s  

than 30 t o  50 a r c  seconds.’ 

would be used f o r  both rece iver  and t ransmi t te r ,  the  angular o f f s e t  

being obtained by e f f e c t i v e l y  d isp lac ing  the  t r ansmi t t e r  r e l a t i v e  t o  the 

rece iver  i n  the f o c a l  plane of t h e  te lescope.  (Although t h i s  is  ef fec-  

t i v e l y  what i s  done, the  a c t u a l  implementation of t h i s  o f f s e t  would un- 

doubtedly be accomplished by a system of beam steerers inse r t ed  between 

the  transmitter and t h e  o p t i c s  used t o  combine the  t r ansmi t t e r  and re- 

ce iver  beams.) Since t h i s  r e l a t i v e  displacement is  a purely de te rminis t ic  

funct ion (see Memorandum 8, Sec. 1 1 1 - A )  t h a t  is pe r iod ica l ly  updated from 

the ear th ,  the only equipment required t o  implement t h e  t r ansmi t t e r  of f -  

s e t  i s  a mechanism for  real-time eva lua t ion  of t he  o f f s e t  funct ion and 

an instrument servo f o r  ad jus t ing  the beam steerers t o  r e a l i z e  t h i s  of f -  

set angle.  Thus, except f o r  the pe r iod ic  updating of the  Offset  function, 

the  poin t ing  of the t r ansmi t t e r  is  accomplished open loop.” Furthermore, 

s ince  the  t r ansmi t t e r  i s  pointed w i t h  respec t  t o  the  rece iver  r a t h e r  

than w i t h  respec t  t o  some a r b i t r a r y  reference frame, conventional i n s t ru -  

ment servo technology i s  s u f f i c i e n t  t o  provide the  o f f s e t  accurac ies  re- 

qui red  (on the  order  of 0 .1  percent) .  

T h i s  being the  case, the  same te lescope 

I 1  

The receiver ,  on the o the r  hand, must perform a t racking  funct ion 

so a s  t o  maintain the s i g n a l  from the  e a r t h  terminal  within i t s  f i e l d  of 

view--and idea l ly ,  loca ted  on i t s  o p t i c a l  ax is .  To accomplish t h i s  task,  
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the  rece iver  t racking sys t em must be able t o  t r a c k  any angular va r i a t ions  

a r i s i n g  from: r e l a t i v e  terminal  motion; transmission medium e f f e c t s ;  

a t t i t u d e  changes of the  spacecraf t  due t o  crew motion, equipment motion, 

meteorite impacts, and solar pressures;  thermally-induced d i s t o r t i o n s  

of t he  te lescope s t ruc tu re ;  and any small o s c i l l a t i o n s  due t o  e x c i t a t i o n  

of s t r u c t u r a l  resonances. 

Considering these  i n  the  order  i n  which they a r e  introduced, the 

point ing angles  from the spacecraf t  t o  the  e a r t h  change due t o  the motion 

of both the  earth and the spacecraf t .  These motions, however, give rise 

t o  slowly varying angular changes. The only transmission medium e f f e c t s  

between the  two terminals  a r e  those introduced by the e a r t h ' s  atmosphere. 

The n e t  cont r ibu t ion  of the  atmosphere i s  t o  deviate  t he  earth t r a n s m i t t e r ' s  

beam away from i ts  nominal d i r ec t ion .  I f  t he  t ransmit ted beam i s  wide 

enough t o  ensure continuous spacecraf t  i l luminat ion,  then t h i s  beam devia- 

t i o n  w i l l  not be discernable  a t  t he  spacecraf t  receiver ,  and w i l l  not 

en te r  i n t o  rece iver  performance. 

A t t i t ude  changes of the  spacecraf t  w i l l  appear a s  t a r g e t  motion 

t h a t  must be t racked by the spacecraf t  rece iver .  Equipment or crew motion 

and meteori te  impacts can be modeled a s  impulsive torques appl ied  t o  a 

pure i n e r t i a ,  r e s u l t i n g  i n  a constant r a t e  of change of spacecraf t  a t t i -  

tude.2 

constant torque, and thus w i l l  induce a constant acce le ra t ion  of space- 

c r a f t  a t t i t u d e .  This l a t te r  acce le ra t ion  is  very small and w i l l  cont r i -  

bute spacecraf t  a t t i t u d e  changes t h a t  a r e  very small compared t o  those 

from o the r  sources.  I t  i s  assumed t h a t  the  spacecraf t  i t s e l f  i s  a t t i t u d e -  

s t a b i l i z e d  by means of r eac t ion  jets, cont ro l  moment gyros, or o the r  

means, such t h a t  t he  spacecraf t  a t t i t u d e  i s  held t o  within some l i m i t s  

of a nominal a t t i t u d e .  (An o v e r a l l  spacecraf t  a t t i t u d e  s t a b i l i t y  of 

one degree, f o r  example, is  present ly  considered rout ine . )  Thus the  

rece iver  t racking  w i l l  have t o  compensate f o r  any devia t ion  of the  space- 

c r a f t  from i t s  nominal a t t i t u d e .  Since such a t t i t u d e  changes a r e  the  

r e s u l t  of torques a c t i n g  on a pure i n e r t i a ,  they w i l l  be slowly varying 

i n  nature .  Present estimates a r e  t h a t  the  a t t i t u d e - s t a b i l i z a t i o n  system 

f o r  a spacecraf t  car ry ing  a l a rge  te lescope and a crew w i l l  have a 

Solar  pressure  a c t i n g  on any spacecraf t  assymetry w i l l  exe r t  a 
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na tu ra l  frequency no g r e a t e r  than 3 rad/sec (0.48 Hz)”j3--a f i g u r e  indica- 

t i v e  of the  smoothness of t h e  a t t i t u d e  dis turbances expected. 

Thermal d i s t o r t i o n s  of the  te lescope s t ruc tu re ,  r e s u l t i n g  from 

d i f f e r e n t i a l  heat ing of t h e  te lescope p a r t s  by s o l a r  rad ia t ion ,  w i l l  

cause the  o p t i c a l  a x i s  t o  devia te  from the  nominal mechanical ax i s .  To 

maintain o p t i c a l  contact,  t he  rece iver  t racking sys t em must compensate 

f o r  t h i s  deviat ion.  However, t he  r a t e  of change of t h i s  d i s t o r t i o n  w i l l  

be very slow since,  except during maneuvers, t he  spacecraf t  w i l l  maintain 

e s s e n t i a l l y  a constant  a t t i t u d e  with respec t  t o  the  sun. 

By f a r  the  most d i f f i c u l t  t rack ing  t a sk  f o r  t he  rece iver  sys tem i s  

compensating f o r  t he  te lescope s t r u c t u r a l  resonances. These small ampli- 

tude o s c i l l a t i o n s  of s t r u c t u r a l  members w i l l  cause small but rap id  ex- 

curs ions of t h e  te lescope o p t i c a l  a x i s  about i ts  nominal point ing 

d i r ec t ion .  (Present es t imates  ind ica t e  s i g n i f i c a n t  d i s t o r t i o n s  a t  r a t e s  

up t o  21 Hz.)” 

point ing angle  v a r i a t i o n s  must be compensated for by the  rece iver  t racking 

system. 

For continuous, small field-of-view pointing, these  

From the  above descr ip t ion  of sources of point ing disturbances,  i t  

appears t h a t  a two-loop rece iver  t racking  system w i l l  be required on- 

board the  spacecraf t .  The primary loop of t h i s  system is  a low frequency 

mechanical system that o r i e n t s  t h e  e n t i r e  te lescope with respec t  t o  the  

a t t i t u d e - s t a b l i z e d  spacecraf t .  This loop would accomplish the  gross  

t racking of t h e  t a r g e t  motion with respec t  t o  the  spacecraf t ,  and compensa- 

t i o n  f o r  g ross  e r r o r s  such as spacecraf t  a t t i t u d e  errors and thermally- 

induced d i s t o r t i o n s .  

a small-angle, high-speed t racking system w i l l  be required t o  accommodate 

the  s m a l l  amplitude, high-frequency dis turbances such a s  the  s t r u c t u r a l  

resonances of the  te lescope and i t s  supports.  This system can be imple- 

mented by means of high-speed beam s t e e r e d  inse r t ed  within the  o p t i c a l  

system of the  telescope. 

In addi t ion  t o  the  mechanical t racking capabi l i ty ,  

The input  data for both the  high-speed and the  mechanical t racking 

systems w i l l  be obtained from an o p t i c a l  point ing e r r o r  de tec tor .  The 

accuracy with which t racking  can be accomplished by a conventional t racking  

system is  l imi t ed  only by the  accuracy of the  e r r o r  de tec tor .  (This 

7 



statement is  t r u e  only i n  those cases  where no data  readout is  required,  

and the  only t a s k  i s  maintaining the  o p t i c a l  a x i s  a l igned  with the in- 

coming s igna l ,  and where t h e  t racking system is  fast  enough t o  compensate 

f o r  any dis turbances w i t h  neg l ig ib l e  dynamic e r r o r .  Since both of these 

condi t ions are s a t i s f i e d  i n  t h i s  appl ica t ion ,  the statement i s  appro- 

p r i a t e .  ) 

angular point ing e r r o r s  t h a t  are extremely \accurate and v i r t u a l l y  noise- 

free--the s tandard devia t ion  of the angular measurement is  a t  l e a s t  

severa l  o rders  of magnitude smaller than the measurement i t s e l f .  

In  Memorandum g4 a technique has been developed f o r  obtaining 

Considering the  f a c t s  t h a t  the  spacecraf t  rece iver  t racking s y s t e m  

is required only t o  maintain optical-system alignment--no data  output 

is  needed--and t h a t  the determination of the  d i r ec t ion  of the  incoming 

s igna l  can be made v i r t u a l l y  noise  free, it can be concluded t h a t  a con- 

vent iona l  au to t racker  cont ro l  system w i l l  produce s a t i s f a c t o r y  t racking 

sys t em performance. The es t imator -cont ro l le r  configurat ion proposed f o r  

the  e a r t h  terminal  w i l l  not be needed s ince  an accurate  estimate of the  

e a r t h ' s  pos i t i on  i s  not required--at least within the context of the  

communication and t racking system--and the  input s i g n a l  d i r ec t ion  is  

not subjected t o  a l a rge  dis turbance as is  the  case f o r  a rece iver  looking 

d i r e c t l y  through the  atmosphere. Since the  technology of conventional 

au to t rack  systems i s  already w e l l  developed, and t h e i r  c a p a b i l i t i e s  w e l l  

known, it i s  not considered appropr ia te  within t h e  scope of t h i s  p ro jec t  

t o  perform ei ther  a de t a i l ed  ana lys i s  or simulat ion of the  on-board 

te lescope t racking system, b u t  r a t h e r  to  simply e s t a b l i s h  t h a t  a con- 

vent iona l  tracking-system design w i l l  be adequate. 

B. Ear th  Terminal 

The con t ro l  of t he  e a r t h  terminal  cons i s t s  of the  same two bas ic  

func t ions  as required of the spacecraf t  terminal:  (1) t racking  of the  

incoming s igna l  from t h e  spacecraf t  t o  maintain co r rec t  alignment of 

the  earth-based receiving telescope, and (2)  o f f s e t t i n g  of the  t rans-  

m i t t e r  a x i s  from the  rece iver  a x i s  t o  compensate f o r  the  r e l a t i v e  motion 

of the e a r t h  and the  spacecraf t  during the round-trip t r a n s i t  t i m e  of 

t he  o p t i c a l  s igna l .  The second of these  func t ions  can be accomplished 
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i n  t he  same manner a s  described i n  Sec. 11-A.  The t racking function, 

however, is  made more d i f f i c u l t  by f luc tua t ions  i n  the  s i g n a l ' s  angle- 

o f - a r r iva l  introduced by the  e a r t h ' s  atmosphere. Since these  f luc tua-  

t i o n s  a r e  of a magnitude and frequency spectrum that i s  outs ide the  

c a p a b i l i t i e s  of a conventional au to t racker  system, the  more sophis t i -  

cated es t imator -cont ro l le r  system configurat ion shown i n  Fig. 1 has 

been proposed. 

In order  t o  study t h i s  system i n  d e t a i l ,  it i s  necessary t o  develop 

mathematical models f o r  each of t he  elements i n  the  sys tem.  The speci- 

f i c  der iva t ions  of these  models are presented i n  Memorandum g4 and, 

therefore ,  only a summary of these  r e s u l t s  i s  presented i n  t h i s  repor t .  

The geometric angle  of a r r iva l  of t he  incoming o p t i c a l  s igna l  t h a t  

i s  t o  be t racked by the  earth-based rece iver  is  determined by the  re la -  

t i v e  motion of the  spacecraf t  with respec t  t o  the  t racking s i t e .  The 

geometry of the  problem is  shown i n  Fig. 2. The 1 and '2  axes, which 

l i e  i n  the  plane of the  e c l i p t i c  ( the  plane of the  e a r t h ' s  o r b i t ) ,  and 

the  3 axis ,  which i s  perpendicular t o  t h i s  plane, def ine a sun-centered 

Cartesian coordinate system ( the  1 a x i s  is  taken t o  be the  winter 

s o l s t i c e ) .  

S S 

S 

S 

1. Spacecraft  

A model t o  descr ibe the  spacecraf t  motion is  taken t o  be 

S x = - -  
b X 3  .. 

3 r 
S 

3s  
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\ 
/ ,- TRACKING SITE 

TA -5578-35  
' S  'EARTH'S ORBITAL PATH 

FIG. 2 RELATIVE MOTION OF SPACECRAFT AND TRACKING SITE 

where 

= t h e  product o f  t h e  un ive r sa l  g rav i t a t iona l  
V S  

cons tan t  and t h e  mass of t h e  sun 

= 1.3255 X lo2' m3/sec2 

x , x , x = t h e  pos i t i on  coordinates of t h e  spacec ra f t  

3 coord ina te  
s' 2s, s with r e spec t  t o  t h e  1 

sys t em.  

l S  2 S  3s 

This mathematical model assumes t h a t  t h e  spacec ra f t  is on an i n t e r -  

p lane tary  t r a j e c t o r y  and t h a t  t h e  only f o r c e  a c t i n g  upon i t  is  t h e  sun ' s  

g r a v i t a t i o n a l  a t t r a c t i o n .  I f  t h e  spacec ra f t  were i n  a p lane tary  o r b i t ,  
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t h e  model would have t o  be modified accordingly.  I t  should be noted 

t h a t  t h e  d i f f e r e n t i a l  equations (1) m e r e l y  g ive  an approximate descrip- 

t i o n  of t h e  spacec ra f t  motion, but are s u f f i c i e n t  as a model f o r  t h e  

purposes of  applying optimal es t imat ion  and con t ro l  theory t o  t h e  system 

design (see Sec. 111). 

The equations of motion (1) can be put i n t o  s t a t e -va r i ab le  form 

upon d e f i n i t i o n  of t h e  six-dimensional s t a t e  vec tor  of t h e  spacecraf t ,  

x =  
S 

c -  
X 

l S  

2S 

IS 

2S 

3s4 

X 

S 
3 

X 

ir 

X 

X 

J 

which enables t h e  d i f f e r e n t i a l  equations (1) t o  be r e w r i t t e n  concise ly  

as 

x =  
S 

c 

X 

ls 

3s 

IJ-sxl 

S 
2 

X 

2 

S -- 
3 r 
S 

h x 2 s  -- 
3 r 
S 

psx3 ’ 
S - -  

3 r - s .  

= f s ( X s >  
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where f ( x  ) i s  a six-dimensional vec tor  func t ion  of t h e  s ta te  x . 
s s  s 

I n  o rde r  t o  account f o r  a c t u a l  input  disturbances as w e l l  as in-  

accurac ies  i n  t h e  mathematical model of spacec ra f t  motion, a random 

fo rc ing  t e r m  i s  included i n  Eq. (3), as follows: 
I., 

k S = fs(Xs) + ws (4 1 
-# 

where t h e  six-dimensional vec tor  w 

be a white, Gaussian noise  process with zero mean and covariance Q . 
(having elements wi ) is  assumed t o  

S S 

S 

The a c t u a l  t r a j e c t o r y  of t h e  spacec ra f t  ( i .e . ,  t h e  t r a j e c t o r y  t o  

be t racked  by t h e  te lescope  i n  t h e  digital-computer s imula t ion)  is 

generated by a set of d i f f e r e n t i a l  equations t h a t  a r e  more complete than 

t h e  model described i n  Eqs. (1). For an Earth-Mars mission, t h e  fo rces  

a c t i n g  upon t h e  spacecraf t  due t o  t h e  g r a v i t a t i o n a l  f i e l d s  of Mars and 

t h e  ea r th ,  as w e l l  as t h e  sun, a r e  considered. Hence, t he  a c t u a l  equa- 

t i o n s  of motion f o r  t h e  spacec ra f t  a r e  taken t o  be 

where 

m = [(Xis - x1J2 + k2. - X2J2 + (x3s - x3$2 - 
I 
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= t h e  product of t h e  universa l  g r a v i t a t i o n a l  pm 
cons tan t  and t h e  mass of Mars 

2 = 4.251 X m3/sec 

= t h e  product of t h e  un ive r sa l  g r a v i t a t i o n a l  
I-1, 

cons tan t  and t h e  mass of t h e  e a r t h  

2 = 3.986 X m3/sec 

x , x2 , x3 = t h e  p o s i t i o n  coordinates of Mars i n  t h e  1 
S' 

m m 
2s, 3 coord ina te  system l m  

S 

x , x , x = t h e  pos i t i on  coordinates of t h e  e a r t h  i n  t h e  

3 coord ina te  system. l e  'e 3e 
ls' '8, s 

I t  should be noted t h a t  t h e  x and x are well-known funct ions  of t i m e  i i m e d i c t a t e d  by t h e  o r b i t a l  motions of Mars and t h e  ea r th ,  respec t ive ly .  

2. Telescope Dynamics 

To descr ibe  t h e  t e l e scope ' s  mechanical motion a very s impl i f i ed  

2t, 3 coord ina te  s y s t e m  

axes de f ine  a 
t' t 
The It and 2 

diagram of i t s  s t ruc tu re ,  r e l a t i v e  t o  t h e  1 

of t h e  t r ack ing  s i te ,  i s  given i n  Fig.  3. 

plane p a r a l l e l  t o  t h e  e a r t h ' s  equa to r i a l  plane, with t h e  1 

a s  l y i n g  i n  t h e  plane of t h e  g rea t  c i rc le  passing through t h e  t r ack ing  

s i t e  and t h e  e a r t h ' s  poles ( t h e  1 a x i s  is determined by t h e  t r ack ing  

s i te ' s  longitude, which i s  r e l a t e d  t o  t h e  prime meridian by a cons tan t  

angle) ;  t h e  3 a x i s  i s  p a r a l l e l  t o  t h e  e a r t h ' s  po la r  ax i s .  I t  has been 

assumed t h a t  t h e  te lescope  opera tes  on an e q u a t o r i a l  mount; hence, 

t r ack ing  and poin t ing  are i n  t e r m s  of t h e  te lescope  dec l ina t ion  and 

hour angles,  cp and 8,. The t e l e scope  tube i s  gimbal-mounted on t h e  

te lescope  support  and r o t a t e s  about t h e  dec l ina t ion  a x i s  i n  a plane 

perpendicular t o  t h e  plane determined by t h e  1 and 2 axes; t h e  e n t i r e  

t 
a x i s  defined t 

t 

t 

* 
t 

t t 

* 
This terminology is  cons i s t en t  with t h a t  used i n  astronomy. 
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3, (TELESCOPE TUBE TELESCOPE TUBE 

TA -,5 578 - 37R 

FIG. 3 MECHANICAL STRUCTURE OF TELESCOPE 

TA -,5 578 - 37R 

FIG. 3 MECHANICAL STRUCTURE OF TELESCOPE 

t e lescope  s t r u c t u r e  r o t a t e s  about t h e  po la r  (or hour-angle) ax i s ,  which 

corresponds t o  t h e  3 axis.  

wi th  a normal t o  t h e  e a r t h  a t  t h e  t r ack ing  si te,  where i s  t h e  l a t i -  

tude of t h e  s i t e .  The r e l a t i v e  o r i e n t a t i o n  of t h e  1 

3 coord ina te  s y s t e m s  i s  given by t h e  orthogonal transformation 

- + t  

s' 2s, 

The po la r  a x i s  subtends an angle  of 90" t 

t 
3 and 1 t '  2t' t 

S 
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where 

n = angular rate of r o t a t i o n  of ear th  

-5 = 7.28 X 10 rad/sec 

6 = a r b i t r a r y  angle 

= angle between earth‘s po la r  a x i s  and a normal t o  t h e  

plane of the e c l i p t i c  

= 23.45’ (0.41 rad).  

A l i n e a r  model t o  descr ibe  t h e  mechanical behavior o f  t h e  te lescope  

and i ts  d r i v e  motors is  taken t o  be 

where 

J = moment of i n e r t i a  of t h e  te lescope  tube  about the  
‘p dec l ina t ion  a x i s  

2 
Je(t) = J i  + J cos cpt CP 

= instantaneous moment of i n e r t i a  of t h e  e n t i r e  te lescope  
s t r u c t u r e  about t h e  po la r  axis 

Ji = moment of i n e r t i a  about t he  po la r  a x i s  of t he  te lescope  
s t r u c t u r e  w i t h  t h e  te lescope  tube  o r i en ted  a t  ‘p = 90’ t 

= damping f a c t o r s  due t o  the  bearings t h a t  support  t h e  
t e l e scope ’ s  dec l ina t ion  and po la r  axes, r e spec t ive ly  frp’ f e  

= motor torques about the te lescope’s  dec l ina t ion  and 
po la r  axes, r e spec t ive ly ;  these q u a n t i t i e s  correspond 
t o  t h e  con t ro l  va r i ab le s .  

“Cp’ ue 

I n  modeling t h e  t e l e scope ’ s  mechanical motion, bending of the  te lescope  

s t r u c t u r e  caused by t h e  f o r c e  of g rav i ty  is not included. Since t h i s  
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bending (which is  e s s e n t i a l l y  a s t a t i c  e f f e c t )  can be determined ex- 

perimentally as a func t ion  of t h e  angles cp 

sa t ed  f o r  i n  t h e  system design and need not be included i n  t h e  tele- 

scope's dynamic equations.  For deep-space communication (e.g., an Earth- 

Mars mission),  t h e  te lescope  w i l l  be subjec ted  t o  very s m a l l  angular 

rates and acce le ra t ions .  Thus, s i n c e  t h e  te lescope  i s  an extremely 

r i g i d  s t r u c t u r e ,  i t  is reasonable t o  assume t h a t  any bending of t h e  

te lescope  s t r u c t u r e  due t o  these  acce le ra t ions  i s  neg l ig ib l e .  There- 

fore ,  i n  t h e  above mathematical model i t  has been assumed t h a t  t h e  

te lescope  tube and support  are both p e r f e c t l y  r i g i d .  Thermal d i s t o r t i o n  

of t h e  te lescope  i s  e s s e n t i a l l y  a s teady-s ta te  e f f e c t  (having a t i m e  

constant on t h e  o rde r  of hours) which can r ead i ly  be measured and com- 

pensated f o r  i n  t h e  s y s t e m .  Hence i t  is not necessary t o  inc lude  t h i s  

e f f e c t  i n  t h e  t e l e scope ' s  dynamic equations.  Additionally,  J can be 

considered t o  be a func t ion  of t i m e .  I t  should be noted t h a t  t h e  d i f -  

f e r e n t i a l  equations (7)  merely g ive  an approximate desc r ip t ion  of t h e  

t e l e scope ' s  mechanical nlotion and i t s  d r i v e  motors, but a r e  s u f f i c i e n t  

a s  a model f o r  t h e  purposes of applying optimal es t imat ion  and con t ro l  

theory t o  t h e  system design (see Sec. 111). 

and et ,  i t  can be compen- t 

8 

I t  i s  assumed t h a t  hydros t a t i c  bearings are used t o  support t h e  

te lescope  mount's dec l ina t ion  and po la r  axes. 

are employed t o  o b t a i n  a high degree of smoothness i n  t h e  mechanical 

motion of t h e  te lescope  and, hence, t o  permit t h e  development of a 

high-precision po in t ing  and t r ack ing  system. Furthermore, these  bearings 

reduce t h e  f r i c t i o n  t o  exceedingly s m a l l  values, so  t h a t  t h e  te lescope  

can be dr iven  by r e l a t i v e l y  s m a l l  motors for t h e  low t r ack ing  rates t h a t  

are required.  With hydros t a t i c  bearings, t h e  breakaway torque ( s t a t i c  

f r i c t i o n )  i s  neg l ig ib l e ,  and it i s  not necessary t o  inc lude  t h i s  e f f e c t  

i n  t h e  model f o r  t h e  t e l e scope ' s  dynamics. I t  i s  a l s o  assumed t h a t  

d i r ec t -d r ive  torque motors a r e  employed t o  generate t h e  torques (con- 

t r o l s )  u and u which d r i v e  t h e  te lescope  about t h e  dec l ina t ion  and 

polar  axes, r e spec t ive ly .  Torque motors are designed t o  provide very 

smooth output torque (independent of s h a f t  pos i t i on ) ,  thus making 

poss ib l e  a high degree of r e so lu t ion  i n  p o s i t i o n  a t  low opera t ing  

Hydrostatic bearings 

cp 9' 
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speeds. Direct-drive torque motors are a t tached  d i r e c t l y  t o  t h e  load 

i t s e l f  ( i . e . ,  t h e  te lescope s h a f t s ) ;  hence, t h e r e  i s  no gear t r a i n  re- 

quired,  with i t s  inherent  windup and backlash e r r o r s .  Furthermore, 

t h e  dynamics of t he  d r ive  motors (having t i m e  constants  less than one 

mil l isecond)  a r e  considerably f a s t e r  than t h e  te lescope ' s  dynamic be- 

havior  and a r e  considered as  having a t r a n s f e r  funct ion of un i ty  i n  the  

above model. 
.. 

I t  i s  assumed t h a t  t h e  earth-based terminal i s  equipped with a * 

120-inch (approximately 3-meter) te lescope,  s i m i l a r  i n  s t r u c t u r e  t o  the  

Lick Observatory te lescope on M t .  Hamilton i n  Cal i forn ia .  The s p e c i f i -  

ca t ions  f o r  t h i s  telescope5 have been used t o  a r r i v e  a t  the  following 

nominal values f o r  the  te lescope parameters defined i n  Eq. (7): 

6 2 kg-m J' = 0.6 X 10 0 

5 N - m  f = 0.8 X 10 
'p rad/s ec 

5 N o m  
f e  = 3.1 x 10 rad/sec ' . 

The equations of motion (7) can be put  i n t o  s t a t e -va r i ab le  form by 

def in ing  the  four-dimensional s t a t e  vector  of t he  te lescope 

x =  t 
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and the two-dimensional control vector 

u=p] ? 

which enables the differential equations (7) to be rewritten concisely as 

where 

F 
(P 

0 

DrP = [ ~  
n F (t) = 0 

Equation (11) indicates the uncoupled behavior of the telescope’s 

declination and polar channels. This model permits the computation 

of the optimal control law to be greatly simplified, as will be shown 

in Sec. 111-B. 

Since a digital computer is to be employed for the purpose of con- 

trolling the telescope, the differential equation (11) will be con- 

verted into an equivalent difference equation. This is accomplished 

by assuming that u, as well as F and D is constant over the interval 

[kat, (k + 1) At]: 
0 0’ 
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where 

i! 
i = O  

W 

F i ( k )  - ( A t ) i  * (k)  = 8 i! 
i =O 

where x (k) and u(k) a r e  abbreviated representa t ions  f o r  x (kAt) and t t 

t u(kAt), respec t ive ly  (At i s  the  i t e r a t i o n  in te rva l ) .  The matrices @ 

and A can be computed with an a r b i t r a r y  degree of accuracy by tak ing  

a s u i t a b l y  la rge ,  but f i n i t e ,  number of terms i n  t h e  s e r i e s  expansions 

of E q s .  (13).  

t 

In  order  t o  account f o r  ac tua l  input  dis turbances a s  w e l l  a s  in -  

accuracies  i n  t h e  mathematical model of t h e  mechanical behavior of t h e  

te lescope  and i ts  d r ive  motors, a random fo rc ing  term i s  included i n  

E q .  (12) a s  follows: 

20 



where t h e  four-dimensional vec tor  w (having elements wi ) is  assumed 

t o  be a white, Gaussian no i se  process wi th  zero mean and covariance Q 

I t  is a l s o  assumed t h a t  t h e  te lescope  i s  enclosed i n  a dome so  t h a t  i t  

is  not subjec ted  t o  wind disturbances,  but such load disturbances can 

e a s i l y  be included i n  t h i s  formulation. 

t t 

t '  

The a c t u a l  mechanical behavior of t h e  te lescope  and i t s  d r i v e  

motors ( i . e , ,  t h e  t e l e scope ' s  mechanical motion i n  t h e  d i g i t a l  computer 

s imula t ion)  i s  generated by a set of d i f f e r e n t i a l  equations t h a t  a r e  

more complete than t h e  model described i n  Eqs. (7 ) .  The a c t u a l  equa- 

t i o n s  of motion f o r  t h e  te lescope  and i t s  d r ive  motors are taken t o  be 

.. 2 . (15) t = ue (Ji + Jcp cos cpt) et  + f e  8, - 25 6 4 cos cpt s i n  cp 
c p t t  

The nonlinear terms i n  t h e  above d i f f e r e n t i a l  equations a r e  introduced 

by t h e  motion of t h e  te lescope  about i t s  dec l ina t ion  and po la r  axes. 

For very s m a l l  t r ack ing  rates t h e s e  nonlinear t e r m s  w i l l  be neg l ig ib l e .  

3 ,  Measurement System 

The measurement system c o n s i s t s  of t he  following elements. 

D i g i t a l  Angular Readouts: These are employed t o  measure cp and t 
et ,  t h e  angular pos i t i ons  of t h e  t e l e scope ' s  dec l ina t ion  and po la r  (or 

hour-angle) axes, r e spec t ive ly .  These observa t ions  are  corrupted by 

t h e  measurement noises  v and V B  , which are modeled a s  white, Gaussian 

no i se  processes with zero means and var iances  denoted by o2 and 0 8  . 
(Actually, t hese  measurement noises have d i s c r e t e  p robab i l i t y  d e n s i t i e s . )  

I n  addi t ion ,  v and v are s t a t i s t i c a l l y  independent. 

2 V t  t 

V t  t 

vt 
Opt ica l  Detector:  This measures t h e  angular po in t ing  e r r o r s ,  

'po - cp; and 8 
of t h e  t e l e scope ' s  o p t i c a l  ax i s ,  respec t ive ly ,  and cp' and 0; are t h e  

dec l ina t ion  and hour angles of t h e  o p t i c a l  s i g n a l  from t h e  spacec ra f t .  

The terms de f in ing  t h e  instantaneous angle of a r r i v a l  of t h e  s i g n a l  are 

- e ; ,  where cp and 8, are t h e  dec l ina t ion  and hour angles 
0 0 

S 
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given by 9; = cps + vCP 

c r a f t ' s  dec l ina t ion  and hour angles, r e spec t ive ly  (these angles, which 

determine t h e  geometric angle of a r r i v a l  of t he  s i g n a l  t o  be tracked, 

are func t ions  of x and w i l l  be defined below), and v and ve repre- 

s e n t  t h e  e f f e c t  of atmospheric-induced image excursion, which is  a 

r e l a t i v e l y  r ap id  r e f r a c t i v e  bending of t he  o p t i c a l  beam (it i s  not  

necessary t o  inc lude  t h e  e f f e c t  of t h e  s teady-s ta te  r e f r ac t ion ,  s ince  

i t  can be accu ra t e ly  measured and compensated f o r  i n  t he  s y s t e m  des ign) .  

and 0; = eS + v , where 'p and 8 are the  space- a ea S S 

S 'pa a 

* 
The random dis turbances  v and v can be modeled as whi te ,  Gaussian 

no i se  processes w i t h  ze ro  means and variances given by o2 

Additionally,  v and v are assumed t o  be s t a t i s t i c a l l y  independent. 

I t  i s  assumed t h a t  a charge-storage tube  (such a s  an iconoscope or an 

image or th icon)  employing a ras ter  scan i s  used as t h e  o p t i c a l  de t ec to r ;  

i n  a t r ack ing  mode, the  po in t ing  e r r o r s  are small enough so t h a t  t h e  

ope ra t ion  of t h e  d e t e c t o r  can be considered l i n e a r ,  Other de t ec t ion  

techniques, such as a t e t r a h e d r a l  beam-splitting prism or conica l  

scanning, could a l s o  be' employed. 

po in t ing  e r r o r s  are corrupted by t h e  measurement noises v and v 

which can be modeled as white, Gaussian no i se  processes wi th  zero  means 

and variances denoted by o2 and o . Furthermore, v and v are 

uncor re l a t  ed. 

va ea 2 and 08 . 
(pa a 

CPa 'a 

The observations of t h e  angular 

qd ed' 

2 
vd 'd vd 'd 

Coherent Code Transponder on Spacecraft:  This i s  employed t o  

measure t h e  spacec ra f t  range p ( t h i s  quant i ty ,  which is a func t ion  of 

x w i l l  be defined below), This measurement can be obtained by use 

of t h e  primary o p t i c a l  channel or an  aux i l i a ry  microwave l i n k .  The 

observa t ion  of t h e  spacec ra f t  range is corrupted by t h e  measurement 

noise  v which is  modeled as a w h i t e ,  Gaussian no i se  process w i t h  zero 

mean and var iance  given by 0 

S 

Si' 

P '  2 
P '  

* 
For t h e  purposes of e s t ima t ion  t h i s  i s  a reasonable approximation, 
since t h e  power s p e c t r a l  d e n s i t i e s  of v 
about 250 rad/sec, which i s  appreciably g r e a t e r  %han the  bandwidth of 
t h e  t e l e scope ' s  mechanical motion (0.05 t o  0.50 rad/sec).  

and ve have bandwidths of CPa 
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The development of t h e  above mathematical models f o r  t h e  s t a t i s t i c s  

of t h e  measurement system are presented i n  g r e a t e r  d e t a i l  i n  Ref. 4. 

and BS, are de- , % The s p a c e c r a f t ' s  dec l ina t ion  and hour angles 

f ined  i n  t h e  same way as t h e  corresponding te lescope  angles ,  which a r e  

shown i n  Fig.  3. 

In  t h e  ls, 2s,  3 

vector  de f in ing  t h e  geometric l i n e  of s i g h t  from t h e  t r ack ing  s i t e  t o  

t h e  spacec ra f t  i s  given by 

The expressions f o r  cp 

coord ina te  system (see Fig. 2 ) ,  t h e  three-dimensional 

and eS a r e  obtained as follows: 
S 

S 

where 

and y which i s  t h e  p o s i t i o n  of t h e  earth-based t r ack ing  s i t e ,  i s  t h e  

sum of two components: t h e  e a r t h ' s  o r b i t a l  motion and t h e  e a r t h ' s  

r o t a t i o n  about i t s  axis--both of which are  well-known funct ions  of 

t i m e .  

S J  

Using t h e  orthogonal transformation of E q .  (6), zs  can be ex- 

2t, 3 coord ina te  system as t' t pressed i n  t h e  1 

Zt = Tt/s zs 

Then it can be shown t h a t  

-1 cp = s i n  
S 
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and 

I 0 = s i n  
S 

(19) 

The spacec ra f t  range p which 

t o  t h e  spacecraf t ,  i s  given by 
S ,  

- 
ps - 

By s u b s t i t u t i n g  from Eqs. 

d i s t ance  from t h e  t r ack ing  s i te  

s) %!' (16) and (171, one can express ~p 

and p 

vector  [Eq. (211, and t h e  elements of ys, which are known time-varying 

func t ions  descr ib ing  t h e  e a r t h ' s  o r b i t a l  and r o t a t i o n a l  motion. 

i n  terms of t h e x i  , which are contained i n  t h e  spacec ra f t  s ta te  
S 

S 

The s y s t e m  described i n  Fig.  1 c o n s i s t s  of two t r ack ing  loops 

ope ra t ing  i n  series. The t e l e scope ' s  mechanical a x i s  and i ts  d r i v e  

motors are loca ted  i n  t h e  primary t r ack ing  loop, toge ther  with t h e  

es t imator  and c o n t r o l l e r .  The func t ion  of t h e  primary loop is  t o  pro- 

v ide  smooth t r ack ing  of and e S ,  t h e  slowly varying mean va lue  of t h e  

incoming s i g n a l ' s  angle  of a r r i v a l ,  by t h e  t e l e scope ' s  mechanical ax i s ,  

which is defined by cp 

angle-of-arrival mean value,  t h e  s i g n a l ' s  instantaneous angle  of a r r i v a l  

(defined by 'p 4- v ) w i l l  be kept wi th in  t h e  dynamic range 

of t h e  beam steerer, which i s  i n  t h e  secondary loop. The secondary 

t r ack ing  loop i s  a d i r e c t  feedback of t h e  o p t i c a l  de t ec to r  output t o  

a small-angle, high-frequency beam steerer. The purpose of t h i s  secon- 

dary t r ack ing  loop is  t o  cause t h e  t e l e scope ' s  o p t i c a l  a x i s  (defined by 

S 

and 0,. By providing smooth t r ack ing  of t h e  t 

and flS + v 
s 'pa ea 

and 8 ) t o  follow t h e  r ap id  f l u c t u a t i o n s  i n  t h e  s i g n a l ' s  angle  of 

a r r i v a l ,  thus  ensuring t h e  m a x i m u m  poss ib l e  signal-to-noise r a t i o .  This 

is achieved by n u l l i n g  t h e  angular po in t ing  e r r o r s .  

0 0 

The t r ack ing  conf igura t ion  f o r  t h e  dec l ina t ion  channel is  shown i n  

Fig. 4; t h e  polar  (or hour-angle) channel has t h e  i d e n t i c a l  form. I t  
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BEAM STEERER\ 
I 

- 
TA-5578-41 

FIG. 4 TRACKING CONFIGUdATlON (declination channel) 

i s  assumed t h a t  t h e  beam steerer i s  implemented by a system of 

p i ezoe lec t r i ca l ly - ro t a t ed  mirrors,  which provide orthogonal de f l ec t ions  

of t he  o p t i c a l  beam about t h e  dec l ina t ion  and po la r  axes. This type of 

beam steerer can be designed t o  have a bandwidth of about 20 t o  50 kHz, 

and be e s s e n t i a l l y  l i n e a r  over a dynamic range of 1100 seconds of arc. 

Since t h e  beam steerer has a bandwidth t h a t  i s  considerably g r e a t e r  

than  t h e  bandwidth of t h e  t e l e scope ' s  mechanical motion, i t  is reasonable 

t o  consider i t  t o  be described by a t r a n s f e r  func t ion  of un i ty .  The 

feedback ga in  G (where G > 0) is  chosen s u f f i c i e n t l y  la rge ,  cons i s t en t  

with s t a b i l i t y  cons idera t ions ,  t o  reduce t h e  angular po in t ing  e r r o r  t o  

an  acceptab le  l e v e l .  

From Fig.  4, i t  can be shown t h a t  t h e  output of t h e  o p t i c a l  de t ec to r  

f o r  t h e  dec l ina t ion  channel i s  given by 
- 1 
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Similar ly ,  t he  output of the  o p t i c a l  de t ec to r  f o r  t he  polar  channel is  

The equations f o r  t h e  measurement system can be expressed concisely 

by def in ing  t h e  10-dimensional s ta te  vector  x of t h e  o v e r a l l  sys tem,  

which cons i s t s  of t he  spacecraf t  s t a t e  x and the  te lescope s t a t e  x * 
S t '  

Hence, t h e  measurement equations can be defined i n  terms of t h e  s t a t e  

vec tor  x by the  f ive-dimensional measurement vec tor  

+I: 
From E q s .  (18), (19), and (20), t h e  spacec ra f t ' s  dec l ina t ion  and hour 

angles and t h e  spacecraf t  range a r e  time-varying, nonl inear  funct ions 

of t h e  s y s t e m  state--cps[x(k), k], Bs[x(k), k ] ,  and ps[x(k), k ] .  Hence, 

t h e  measurement equations a r e  time-varying and nonl inear  a s  represented 

by h [x(k) ,  k ]  . From t h e  above discussion,  t he  f ive-dimensional measure- 

ment no ise  vec tor  v(k)  is  a white, Gaussian noise  process with 

26 



E[v(k)]  = 0 

0 
The covariance matrix R(k) takes  t h i s  form s ince  the  opt ica l -de tec tor  

noise,  t h e  noise  introduced by image excursion, t h e  noise  on t h e  range 

measurement, and t h e  d i g i t a l  angular-readout no ise  are mutually inde- 

pendent. 

given as follows: 

For t h e  assumed s y s t e m  parameters,2 t h e  var iances  i n  R(k) are 

2 2 -19 2 

'd 'd 
13 (k) = o (k) = 6 x 10 rad 

2 -1 0 2 
0 o2 (k) = o (k)  = 2.25 X 10 rad 
a 'pa 

2 8 2  
P 
o (k) = 10 m 

2 2 2 
0 (k) = O0 (k)  = 2.25 x rad  

'pt t 
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PRECEDING PAGE BLANK 

III ESTIMATOR-CONTROLLER 

NOT FILMEb. 

CONF'IGURATION 

The function of the estimator is to generate a ''best" estimate of 

the present system state x, based on all measurements p (which are 
corrupted by noise) up to the present time. This estimate is then em- 

ployed in the controller to compute a "best" control u with respect to 

a given performance criterion. The estimation and control equations 

are derived in Secs. 111-A and 111-B, respectively. The approach taken 

assumes that the equations for the estimator and the controller can be 

solved separately. Since the optical-tracking problem is nonlinear, 

this assumption may yield a solution that is not strictly optimal. 

However, this approach yields a solution that is both computationally 

feasible and, as shown by the results of extensive computer simulations 

(see Sec. V), yields excellent performance. 

A. Estimation Equations 

6 

In this section the equations for the estimator are developed by 

employing the extended Kalman filter. This concept is an application 

to nonlinear systems of work done by Kalman' in linear estimatibn theory, 

in which the estimate obtained at each time is the maximum likelihood 

estimate conditioned on all measurements up to that time. Justification 

for this approach and a derivation of the extended (or  linearized) 

Kalman filter is presented in Memorandum 6* and, hence, will not be 

repeated here, 

From Eqs. (4) and (141, the random disturbance in the model of the 

overall system i s  given by the ten-dimensional vector 

c 1 
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which is  a white, Gaussian noise  process w i t h  

E[w(k)] = 0 

A model f o r  t h e  measurement noise  v(k) is given i n  Eqs. ( 2 5 ) .  The 

i n i t i a l  s ta te  x(0) is  taken t o  be a Gaussian random va r i ab le  w i t h  

E[x(O)] = G(O/O)  

E[{x(O) - G ( O / O ]  {x(O) - 2(0/0)3T] = P(O/O) . (28) 

Furthermore, i t  is  assumed tha t  w(k), v(k),  and x(0) a r e  uncorrelated.  

The r e s u l t i n g  est imat ion equations can be considered as  cons i s t ing  

of two p a r t s :  p red ic t ion  and co r rec t ion  (or  regress ion) .  The following 

nota t ion  w i l l  be employed: 

These expectat ions a r e  conditioned on the  previous measurements and 

COntrQlS. 

1. Predic t ion  

Given t h e  es t imate  of t h e  s y s t e m  s t a t e  a t  t he  kth i n s t a n t  [G(k/k)] 

and the  assumption t h a t  E[w(k)] = 0, t he  predicted system s ta te  f o r  t he  

k + lth i n s t a n t  [G(k + l / k ) ]  i s  obtained from Eqs. (4)  and (14):  
* 

* 
The nonl inear  d i f f e r e n t i a l  equation f o r  xs may be in t eg ra t ed  by a more 
accura te  method i f  necessary.  
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The covariance of t h e  e r r o r  i n  t h i s  p red ic t ion  is  given by 

where 

with @ (k) def ined i n  Eq.  (12) and if? (k) obtained from t h e  nonl inear  

d i f f e r e n t i a l  equat ion (3) by l i n e a r i z a t i o n  about t h e  es t imate  G(k/k) 

[or Gs(k/k)]; i .e.,  

t S 

S 

S 

af 

ax Gs(k) = I + - [Gs($(k)] A t  

i n  which 

S 

S 

af 

ax - 
- -  

0 

0 

0 

3 x x  
s 3s PS 1 

5 r 
S 

3 x x  b 2  3 
s s  
5 r 
S 

s s s  
PS 3 x x  3 x x  PS 3s ls p.5 3s 2s 

5 5 5 
S S S 
r r r 

- 
0 

0 

1 

0 

0 

0 

- 
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2. Correct ion 

The p red ic t ion  $(k + l / k )  is  then cor rec ted  by using t h e  actual 

measurement a t  t h e  k + lth i n s t a n t  [B(k + l ) ]  and t h e  pred ic ted  

measurement f o r  t h e  k + lth i n s t a n t  [b(k + l / k ) ] ,  which is obtained 

from Eq. (24) by s u b s t i t u t i n g  $(k + l /k )  and using t h e  assumption t h a t  

E[v(k + 111 = 0: 

- c  ah 
_I- 

ax 

Hence, t h e  estimate of t h e  system state a t  t h e  k + lth i n s t a n t  is 

given by 

r 
1 a 

bl 

1 

0 

0 
L 

%(k+l/k+l) = 

where t h e  10 x 5 weighting matr ix  i s  given by 

W(k+l) = P(k+l/k) HT(k+l) [R(k+l) + H(k+l) P(k+l/k) HT(k+l)]-l , (35) 

and H(k + 1) is obtained from Eq. (24) by l i n e a r i z a t i o n  about t h e  pre- 

d i c t i o n  $(k + l / k )  [or GS(k + l / k ) ] ;  i .e.,  

H(k + 1) = H[G(k + l / k ) ,  k + 1 1  = ah [G(k + l /k ) ,  k + 1 1  (36) ax 

i n  which 

2 
a 

b2 

2 C 

0 

0 

3 a 

b3 

3 C 

0 

0 

0 

0 

0 

0 

0 
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with 

, 

, b. = - -  , and c .  = - 
S S S 

a% a. = - -  
1 axi 1 axi 1 ax i 

Applying the chain rule for differentiation to E q s .  

1 i 

(16) to (19),  

it can be shown that the a. and b are given by 

where 

a% 
aZ - 
It 

- -  
- z  z 

It 3t 

- z ,.z 
2t 3t - -  

1 
a% 
aZ - 

and 
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where - z  
S 2t ae 

z2 + z a Z  
- -  - 

2 

It It 2t 

- aZ 
2t 

Z 

It 

It 2t 

2 z2 + z 

S - = o  
az3t 

. 
The acps/azj and aes/az can be rewr i t ten  i n  terms of t h e  xi and the  

elements of y by s u b s t i t u t i o n  from Eqs. (16) and (17).  
t j t  S 

From Eq. (201, i t  is 

a r e  given by 

c =  
i 

a s t ra ight forward  matter t o  show t h a t  t h e  c i 

x; - Y; 

L J 

(39) 

The covariance of t h e  e r r o r  i n  t h e  est imate  G(k 4- l / k  + 1 )  is  

P(k+l/k+l) = [I - W(k+l)H(k+l)]P(k+l/k) 

= P(k+l/k) - P(k+l/k)HT(k+l) [R(k+l) + H(k+l)P(k+l/k)HT(k+l) 1 - l  

The extended Kalman f i l t e r  CEqs. (291, (30), (341, (351, and (40)l 

can be r ead i ly  implemented on a d i g i t a l  computer. The a p r i o r i  s t a t e  esti- 

mate G ( O / O )  and i t s  e r r o r  covariance P(O/O) are used t o  i n i t i a l i z e  these  

recurs ive  equations.  I t  should be noted t h a t  i n  t h e  extended Kalman 

f i l t e r ,  t h e  nonl inear  equations (3) and (22) a r e  used i n  Eqs. (29) and 

(34) t o  obta in  t h e  predicted s ta te  and the  pred ic ted  measurement. The 

' 
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l i n e a r i z a t i o n  of Eqs. ( 3 )  and (22), i n  order  t o  obta in  @ and H, i s  

only employed t o  c a l c u l a t e  t he  covariance matrices P and the  weighting 

matrix W. 

S 

Since the  o v e r a l l  system i s  nonlinear,  the  above so lu t ion  t o  the  

est imat ion problem i s  suboptimal. The ex ten t  t o  which t h i s  so lu t ion  t o  

the  estimation problem d i f f e r s  from the  optimum i s  mainly dependent upon 

the  accuracy of the  l i n e a r i z a t i o n  of Eq. ( 3 ) ,  t he  d i f f e r e n t i a l  equation 

f o r  x and of Eq. (22))  the  measurement equation. 
S' 

However, a s  shown i n  Sec. V, the  es t imator  derived i n  t h i s  manner 

i s  capable of achieving an exce l len t  l e v e l  of performance. 

B. Control Equations 

1. General 

In  t h i s  s ec t ion  the  cont ro l  problem i s  solved by appl ica t ion  of 

optimal l i n e a r  cont ro l  theory.  Consider the  performance c r i t e r i o n  

(41) 

The cos t  assoc ia ted  with cont ro l  (where b b 2 0)  i s  e s s e n t i a l  i n  order  

t o  guarantee t h a t  u and u ( the  motor torques)  do not  become too large,  

which, i n  turn,  would cause the  te lescope r a t e s  t o  exceed t h e i r  permis- 

s i b l e  ranges of values .  However, the  a c t u a l  t racking performance is  

given by the  f i r s t  two terms i n  Eq.  (41). 

CP' 9 

'p 8 

For t he  purpose of der iving a cont ro l  law, it w i l l  be assumed t h a t  

.. 
' p s = G  S = o  . (42) 

This i s  a very reasonable assumption f o r  a deep-space t racking problem, 

and enables  the  dynamics of the  spacecraf t  angles  t o  be modeled a s  
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and 

where 

If necessary, higher-order models can be used t o  descr ibe the  dynamics 

of the  spacecraf t  angles .  

The q u a n t i t i e s  cf~ and 8 a r e  obtained f r o m  Eqs .  (18) and (19): 
S S 

and 

S 3 ae 
S az j, 

i = c -  i ? 

jt j =1 

where the  p a r t i a l  de r iva t ives  of cp and 8 a r e  given i n  E q s .  (37) and 

(381, respec t ive ly ,  and the  terms h a r e  obtained from E q s .  (16) and 

(17) as 

S S 

Jt  

it = Tt/s + +t/s zs 

i n  which 

S 
1 5 

5 
2S 

2' = 
S 

S 
3 

H 

(46) 

(47) 
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and $ 
o r b i t a l  motion and the  e a r t h ' s  r o t a t i o n  about i t s  ax i s .  

t u t i n g  from E q s .  (371, (381, and (47), @s and 8 

i s  a well-known funct ion  of t i m e ,  determined by the  e a r t h ' s  
S 

By subs t i -  

can be expressed i n  
S 

terms of t h e  x and k , which are contained i n  t h e  spacecraf t  s tate 

vec tor  CEq. (211, and t h e  elements of y and $ 
i S  i S  

S S 

The s ta te  of the  system can be def ined by the  8:dimensional vector  

i n  which the  te lescope s t a t e  

of motion f o r  x a r e  given by - 

- x(k+l) = 

where 

x i s  defined i n  E q .  ( 9 ) .  The equat ions t 

m, = L" 
0 

O 1  I 
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and the matrices @ (k) and A (k) are defined in E q .  (12). t t 

Rewriting J of E q .  (41)  in vector-matrix form, gives 

where 

B =  [" 0 
O 1  be 

A =  

in which A is symmetric and positive semidefinite. 

forward matter to determine A: 

It is a straight- 

A1 = A2 - - 

- 
A3 - 

- 
1 

0 

"0 1 "I 0 

0 
*o -l 0 

-1 

0 
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The design ob jec t ive  is t o  f i n d  t h e  sequence of con t ro l s  

t h a t  minimizes J. The con t ro l  equations w i l l  be derived by applying 

some r e s u l t s ,  obtained by Larson, which are described i n  Quarterly 

Report 3; t h i s  work i s  an  ex tens ion  of r e s u l t s  i n  optimal l i n e a r  con- 

t r o l  theory. 

9 

The optimal con t ro l  i s  given by 

where t h e  2 X 8 ga in  matrix i s  given by 

L J 

and t h e  8 X 8 matrix P s a t i s f i e s  t h e  discrete Riccat i  equation 
C 

L J 

P (N) = A 
C 

For convenience, P (k) w i l l  be r ewr i t t en  i n  a form e n t i r e l y  
C 

analogous t o  A: 

P (k) = 
C 
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where P (k) is symmetric and p o s i t i v e  semidefini te .  Upon performance 

of t h e  ind ica ted  matrix mul t ip l ica t ions ,  t he  optimal con t ro l  i n  E q .  (51) 

becomes 

C 

+ At(k) PZ(k + 1) At(k) At(k) Pi(k + 1) @, $(k/k) 

At(k) Pz(k + 1) @t(k)  Gt(k/k) (54) 

I-l 
I-l P2(k + 1) At(k) 

where  

and the  t e r m  

mates i n  Eq. 

f (k/k)  is  the  est imate  of 

(55) a r e  obtained from E q s .  
t the  te lescope s t a t e .  The esti- 

(181, (19),  (45)’ and (46);  i . e . ,  

where f; (k/k) is  the  est imate  of the  spacecraf t  s t a t e .  

noted t h a t  s ince  E q s .  (181, (19), (451, and (46) a r e  nonl inear  funct ions 

of x the  estimates given i n  E q .  (56) a r e  not optimal i n  the  usual  
S’ 

sense. 

I t  should be 
S 

The R icca t i  equation (53) can be pa r t i t i oned  i n t o  separa te  

P2, and P * 
1’ 3’ 

equations f o r  P 
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T 
1 Pl(k) = A1 + @, Pl(k + l)@ 

L J 

1 P1(N) = A 9 

L J 

O S k < N  , ( 5 8 )  

and 

P (N)  = A3 3 

Equation (58) can be solved f o r  t h e  4 X 4 mat r ix  P independently 

of Eqs. (57) and (59). I t  i s  i n t e r e s t i n g  t o  note  t h a t  Eq. (58) i s  t h e  

R icca t i  equation for t h e  s y s t e m  of Eq. (14), with t h e  performance 

c r i t e r i o n  

2 
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the optimal control for the problem is given by the second term in Eq. 

Once P has been found, it is substituted into Eq. (59), which is a 

linear equation in the 4 X 4 matrix P Since the 4 X 4 matrix P does 

not enter into the control equation (54) or the calculation of P and 

P3, it is not necessary to solve Eq. (57). 

(54). 

2 

3' 1 

2 

From the form of $ (k) and At(k), which are defined in Eq. (12), t 
and A,, which is defined in Eq. (50), it can be shown that the solution 

& 

to Eq. (58) is of the form 

This simplification permits the Riccati equation (58) to be partitioned 

into separate equations for the 2 X 2 matrices P and Po: 
'p 

P (k) = A + gTP (k f 1)$ 
tp CP 'p'p 'p 

- @ P (k + 1)A (k + l)A 'p I-l ATP 'pep (k + 1)$ 'p 
T 
cp'p 

and 
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From the form of $? which is defined in Eq. (49)’ A3, which is 1’ 
defined in Eq. (501, P2(k), which is given in Eq. (50)’ It(k), and 

A (k), it can be shown that the solution to Eq. (59) is of the form t 

This simplification permits Eq. (59) to be partitioned into separate 

equations for the 2 X 2 matrices P and P 
30’ 3Y 

P3cp(k) = A + GT P (k f l ) G  
3(P d 3Y (P 

- m d  PSY(k + l)A (k + l ) A  cp l 1  ATP ( P V -  (k + l)$? cp 
T 

O $ k < N  , 
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Final ly ,  t he  t w o  components of the  cont ro l  u(k) can be obtained 

separa te ly  a s  

where 

Thus, t he  computational requirements have been reduced markedly. 

Instead of solving the  8 X 8 R icca t i  equation (53) fo r  P w e  may per- 

form the  following s teps :  f i r s t  solve the  2 X 2 Ricca t i  equations (61) 

and (62) f o r  P and P8; then, using P and P ca l cu la t e  P and P 

from the  2 x 2 l inear  equations (64) and (65).  The optimal cont ro l  u 

is  then obtained by s u b s t i t u t i n g  these  matrices, together  with the  

state estimate G(k/k) [$ (k/k),  Gs(k/k), qs(k/k),  and tS(k/k)  a r e  

computed f r o m  Eqs. (56)], i n t o  Eqs. ( 6 6 )  and (67). 

C’ 

38 ‘p cp 8’ 3cp 

S 

2. Steady- S t a t e  Approximation 

Suppose t h a t  the  d i f fe rence  equat ion (12), which descr ibes  the  

and A t  a r e  te lescope dynamics, i s  s t a t iona ry  ( i . e . ,  the  matrices m t 
44 



constant) ;  t h i s  is equivalent  t o  assuming t h a t  F and D of Eq. (11) 

a r e  constant .  This assumption is reasonable over a s u b s t a n t i a l  t i m e  

i n t e rva l ,  s ince  the rate of change of F and D is  s l o w  with respec t  

t o  the  system t i m e  constants .  Additionally,  it w i l l  be assumed t h a t  the 

summation i n  the  performance c r i t e r i o n  J of Eq. (41) is over an i n f i n i t e  

t i m e  i n t e r v a l  (i.e.,  N = a). T h i s  assumption i s  q u i t e  reasonable, s ince  

the  i n t e r v a l  of t i m e  during which the  spacecraf t  is  being t racked w i l l  

be appreciably l a r g e r  than the  system t i m e  constants .  With these  two 

assumptions, computation of the optimal cont ro l  u(k) is  g r e a t l y  simpli- 

f ied ,  a s  w i l l  be shown below. 

8 8 

0 0 

.Q 

Formulation of the cont ro l  problem i n  
t h i s  manner w i l l  be referred t o  as the  "s teady-state  approximation. I f  

The R icca t i  equations (61) and (62) become 

and 

The above a r e  nonl inear  a lgeb ra i c  equations i n  t h e  steady-state matr ices  

P and Po, respec t ive ly .  A poss ib le  way of solving these  equations i s  

t o  assume an i n i t i a l  so lu t ion ,  s u b s t i t u t e  it i n t o  the  right-hand s ide,  

and eva lua te  a new so lu t ion ;  t h i s  i t e r a t i v e  procedure is  continued u n t i l  

successive so lu t ions  converge. 

Cp 

In  addi t ion ,  Eqs. (64) and (65) become 

P = A  + g T P  
39 3Cp d 3rp ' 9  

-1 T - 'd '3y ~ e p  + 4 'rp At 'rp "p 

and 
T 

A3e -k @h '30 @e . '38 
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Subs t i t u t ing  P and P the  so lu t ions  t o  Eqs. (68) and (691, i n t o  the  

above l i n e a r  a lgeb ra i c  equat ions enables one t o  so lve  f o r  the  steady- 

s t a t e  matr ices  P and P i n  a s t ra ightforward manner. 

(P 8.' 

3cp 38 

The cont ro l  u(k) i s  obtained by s u b s t i t u t i n g  these s teady-s ta te  

matr ices  i n t o  Eqs. (66) and (67) .  Using the  so lu t ions  t o  Eqs. (68) through 

(71) and performing the  ind ica ted  matrix mul t ip l i ca t ions  i n  Eqs. (66) and 

(67), i t  can be shown t h a t  the  two components of t h e  cont ro l  have the  

* 

form: 

and 

The t racking  sys t em thus obtained develops cont ro ls  t h a t  force  the  t e l e -  

scope and spacecraf t  angles  and t h e i r  angular rates t o  be equal ( i . e . ,  

the  f i r s t  two t e r m s  i n  t he  cont ro l  expressions a r e  driven t o  zero) .  

The t h i r d  term provides the  cont ro l  input required t o  keep the  te lescope 

angular r a t e  equal t o  t h a t  of t he  spacecraf t ,  while maintaining zero 

s teady-s ta te  t racking  e r r o r .  For a given set of system dynamics, 

yQl and y w i l l  and y w i l l  be determined by the  choice of b - 
e2 y Y 1  'p2 Y' 

e *  be determined by the  choice of b 

A s  a f u r t h e r  refinement t o  the  s teady-s ta te  approximation, the  t i m e -  

F8 varying na ture  of F and D can be taken i n t o  account a s  follows: 

and D a r e  pe r iod ica l ly  updated and 9 and A of Eq. ( 1 2 )  a r e  reca lcu la ted .  

With these  new matrices,  P [ t h e  so lu t ion  t o  Eq. (69)] is  recomputed. 

Final ly ,  u i s  obtained by using these  updated matr ices .  Thus, a non- 

s t a t i o n a r y  problem i s  solved as a series of d i f f e r e n t  s t a t iona ry  problems. 

I t  is  not necessary t o  repeat  t h i s  procedure a t  every d i s c r e t e  i n s t a n t  

kat ,  since the  rate of change of F and D is  slow with respec t  t o  the  

system t i m e  constants .  

8 e 

e 
e 8 e 

8 

8 8 
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I V  AUTOTRACKER SYSTEM DESIGN 

To permit a comparison of the  performance l e v e l s  achieved by t h e  

es t imator -cont ro l le r  sys t em configurat ion described i n  Sec. I11 and a 

t racking system of more conventional design, an au to t rack  cont ro l  

system was designed t o  operate  w i t h  the same te lescope s t r u c t u r e  and 

spacecraf t  dynamics a s  described i n  Sec. 11-B. The design procedure 

followed i n  a r r i v i n g  a t  a s a t i s f a c t o r y  au to t rack  system design is  de- 

sc r ibed  i n  t h i s  sec t ion .  

r 

" 

For purposes of designing an au to t rack  system configurat ion f o r  the  

earth-based terminal  of the  o p t i c a l  communication l ink ,  the  block 

diagram for the dec l ina t ion  channel can be drawn a s  shown i n  Fig. 5 

( the  hour-angle channel has i d e n t i c a l  form). 

11- 5571- 45 

FIG. 5 AUTOTRACK SYSTEM (declination channel) 

In  Fig. 5, 9, i s  the  te lescope mechanical ax is ,  Atp is  the of f -  

i s  the  o p t i c a l  ax is ,  'p ' To S 
set angle  provided by the  beam steerer 

i s  the t r u e  angle  t o  the spacecraf t ,  v is  the  atmospherically- 

induced disturbance, and v i s  t h e  measurement noise  introduced by 

the  o p t i c a l  detector. The f i g u r e  can be s impl i f ied  by not ing that  

the  bandwidth of t he  secondary loop containing the  beam steerer i s  

much l a r g e r  than t h a t  of the remaining system; hence, i t s  transmission 

(Pa 

yd 
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c h a r a c t e r i s t i c s  can be taken as uni ty .  The primary loop of t he  te lescope  

au to t r ack  system then t akes  t h e  form shown i n  Fig. 6, where v is  t h e  I 

'd 

TA-5578-46 

FIG. 6 PRIMARY TRACKING LOOP FOR AUTOTRACK SYSTEM 
(decl in o ti on channel ) 

measurement noise  r e f e r r e d  t o  t h e  beam-steerer output .  For t h e  type of 

s y s t e m  being considered, t h e  measurement no i se  i s  expected t o  be much 

smaller than  t h e  atmospherically-induced disturbances;  hence9 t h e  input  

s i g n a l  can be approximated by cp + v . The i d e a l  behavior of t h i s  
S CPa 

system can be defined as  the  te lescope  mechanical a x i s  following the  

t r u e  spacec ra f t  d i r e c t i o n  and ignoring the  atmospheric disturbances-- 

- . The design problem thus  reduces t o  the  s p e c i f i c a t i o n  of i . e . ,  'pt - 

a compensation network, which when used i n  conjunction with the  dynamics 

of t h e  telescope, w i l l  most c lose ly  approximate t h i s  i d e a l  performance. 

% 

A s u i t a b l e  approximation f o r  t h e  te lescope  dynamics i s  obtained 

from t h e  development given i n  Sec. 11-B. From E q .  (11) of t h a t  develop- 

ment, t h e  t r a n s f e r  func t ion  f o r  t h e  te lescope  dynamics is  given by 

CP = ,*) 

for t h e  d e c l i n a t i o n  ax i s ,  and 

(74) 

P 
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f o r  the  hour-angle a x i s  (J which v a r i e s  as a funct ion of 9 is  t r e a t e d  

as a constant  i n  order  t o  express the above t r a n s f e r  func t ion) .  Since 

these  t w o  are i d e n t i c a l  i n  form, only the dec l ina t ion  a x i s  w i l l  be t r e a t e d  

i n  detail ,  and t h e  r e s u l t s  simply s t a t e d  f o r  the hour-angle axis. 

8' t' 

As a f i r s t  approach t o  the  design of a compensation network, w e  con- 
ais 

sider the minimization of mean-square t racking  e r r o r  as formulated by 

Newton, Gould, and Kaiser." 

as (P 

a s  IP 
form 

Defining the  power s p e c t r a l  dens i ty  of 9 
c S 

( s )  and the power s p e c t r a l  dens i ty  of t he  atmospheric dis turbance 

( s ) ,  the  so lu t ion  f o r  the  optimum compensation network takes the 
ss 

vv 

where 

While t h i s  optimum compensation does y i e l d  maximal separa t ion  of t he  

s i g n a l  and noise  power, and does not v i o l a t e  any physical  r e a l i z a b i l i t y  

conditions,  it has one se r ious  shortcoming t h a t  removes it  from con- 

s ide ra t ion  for  use i n  a p r a c t i c a l  system. The f i r s t  f a c t o r  i n  Eq. (761, 

1 / G  ( s ) ,  is  the  r ec ip roca l  of the  te lescope dynamics i n  the  dec l ina t ion  

channel. The e f f e c t  of t h i s  t e r m ,  when the  compensation is  cascaded 

w i t h  t he  telescope, is  t o  completely cancel the  te lescope dynamics. With 

cp 

. t h e  p rope r t i e s  of t h e  f ixed  por t ion  of the  system thus removed, t he  re- 

maining terms of t he  compensation funct ion then e f f e c t  the  optimum 

separa t ion  of t he  s i g n a l  from the  noise .  Experience d i c t a t e s ,  however, 

that any attempt a t  "pole cancel la t ion" i s  doomed t o  f a i l u r e  s ince  the 

performance of t he  r e s u l t i n g  system i s  very s e n s i t i v e  t o  s m a l l  parameter 
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changes and w i l l  most o f t e n  become unstable  i f  pe r f ec t  cance l la t ion  

is not achieved. Furthermore, i f  such an approach w e r e  attempted, t he  

s igna l  l e v e l s  required throughout t he  system would c e r t a i n l y  become 

so l a rge  as t o  v i o l a t e  t he  fundamental assumption of l i n e a r i t y ,  and 

thus inva l ida t e  the  r e s u l t s .  

The above exercise ,  however, does provide guidance i n  specifying 

a simple compensation network, The underlying p r inc ip l e  i s  t h a t  i f  t he  

power i n  the  s i g n a l  is  separated i n  frequency from the  power i n  the  

noise,  then t h e  frequency response of the  system should be modified 

t o  respond t o  the  s igna l  but not  t o  the  noise .  For a t yp ica l  low 

s a t e l l i t e  (200-mile a l t i t u d e )  t he  major por t ion  of the  s i g n a l  power 

w i l l  be confined t o  f requencies  below approximately 0 .1  Hz;  f o r  higher 

s a t e l l i t e s  and deep-space probes i t  w i l l  be even lower i n  frequency.” 

On the  o ther  hand, measurements i nd ica t e  t h a t  the  atmospheric dis turbances 

have a r e l a t i v e l y  uniform frequency d i s t r i b u t i o n  up t o  about 13 Hz,  and 

decrease slowly for higher frequencies.’ 

approach is  t o  set the  sys t em bandwidth near 0 . 1  H z  (0.68 rad/sec) so 

a s  t o  ensure adequate s i g n a l  response and a t  the  s a m e  t i m e  t o  e l imina te  

a s  much of t he  noise  a s  poss ib le .  

Thus, the  most des i r ab le  

The above discussion assumes t h a t  load dis turbances such a s  wind 

gus t s  need not be considered, s ince  a high-precision te lescope would 

be enclosed wi th in  a p ro tec t ive  dome. For those cases  where load dis-  

turbances might be encountered, the  closed-loop system bandwidth is  

t o  a l a rge  ex ten t  determined by the  requirement t h a t  the  e f f e c t  of the  

dis turbance on the  system output be minimal. Furthermore, the  above 

argument does not consider t he  problem of t a r g e t  acqu i s i t i on .  For t h e  

very narrow f i e l d  of view employed during t racking  operations,  the  

t rans ien t  response implied by the  closed-loop bandwidth chosen is  much 

too  s luggish  t o  permit successfu l  t a r g e t  acqu i s i t i on  by the  t racking 

sys tem.  To accomplish acqu i s i t i on  it w i l l  most l i k e l y  be necessary t o  

increase the  rece iver  f i e l d  of view and the  sys t em bandwidth. These 

po in t s  a r e  discussed i n  d e t a i l  i n  Ref. 1, and need not be pursued 

f u r t h e r  here .  
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I t  now remains t o  design a compensation network that w i l l  achieve 

the  des i red  system performance as described above. A p r a c t i c a l  approach 

t o  t h i s  design problem (see, f o r  example, Refs. 10 and 12) is t o  evaluate  

the  system performance f o r  compensation networks of increasing complexity 

u n t i l  the  des i red  behavior i s  a t t a ined .  
A 

Trying f i r s t  a s i m p l e  ga in  compensation K as shown i n  Fig. 7, 
C P l  

the closed-loop t r a n s f e r  func t ion  is  given by 

1 

TA- 5571-41 

FIG. 7 AUTOTRACK SYSTEM WITH GAIN COMPENSATION 
(declination channel) 

The bandwidth is  the re fo re  

and for w = 0.628 rad/sec, 
'p 

5 Kcpl = 7.5 x 10 

51 



The r e s u l t i n g  system, however, d i sp lays  two undesirable  charac te r i s -  

t i c s .  F i r s t ,  t h e  damping f a c t o r  is only 5 = 0.0335, which w i l l  y i e ld  

highly o s c i l l a t o r y  t r a n s i e n t  behavior and an ampl i f ica t ion  of approxi- 
cp 

mately 15 f o r  s i g n a l s  i n  the  v i c i n i t y  of the  resonant 

t he  system w i l l  d i sp lay  a s teady-s ta te  t racking  error 

given by the  expression 

frequency . Secondly, 

t o  a ramp input as 
.c 

where R is  the  s lope of t he  ramp input  
i 

For 

the  

and K is the  ve loc i ty  constant .  
V 

t he  maximum expected r a t e  of 

s teady-s ta te  t racking  e r r o r  i n  the  dec l ina t ion  channel i s  

= 7.28 X 1'8-5 rad/sec and K = 9.4, 
"9 i 

= 7.75 x 10 -6 rad . E 
ssv 

While t h i s  t racking  e r r o r  is  probably to le rab le ,  the  corresponding value 

f o r  t he  hour-angle channel (where K = 2.0)  i s  
V0 

= 3.64 x 10 -5 rad E 
8 SS 

which is too l a rge .  

The f i r s t  of these  two d i f f i c u l t i e s  can be a l l e v i a t e d  by adding 

r a t e  feedback a s  i l l u s t r a t e d  i n  Fig. 8. By proper adjustment of t he  

r a t e  feedback ga in  K t he  system damping f a c t o r  can be ad jus ted  t o  

a more s u i t a b l e  value (such as 5 = 0 . 7 ) .  Unfortunately, the  addi t ion  

of rate-feedback compensation has the  e f f e c t  of reducing the  system 

ve loc i ty  constant K thus aggravating the  s teady-s ta te  t racking  e r r o r  

problem. 

(P2' 

cp 

vcp' 

The most s t ra ight forward  approach t o  curing the  problem of steady- 

s t a t e  t racking  e r r o r  i s  t o  add a series in t eg ra t ion  i n  the  compensation 

network. Doing so y i e l d s  the  system configurat ion shown i n  Fig. 9 .  
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TA-5678-48 

FIG. 8 AUTOTRACK SYSTEM W I T H  GAIN COMPENSATION AND RATE FEEDBACK 
(dedi nation channel) 

T8-742512-4 

FIG. 9 AUTOTRACK SYSTEM WITH INTEGRAL FORWARD COMPENSATION AND INTERNAL 
RATE-LOOP COMPENSATION (declination channel) 

T h i s  system design e x h i b i t s  zero s teady-s ta te  t racking e r r o r  f o r  a ramp 

input.  The i n t e r n a l  rate-loop compensation enables one t o  t a i lo r  the  

te lescope dynamics. Having the  three ga ins  (K K and K ) permits 

complete f l e x i b i l i t y  i n  spec i fy ing  the dynamic behavior of the system, 
cpl’  rp2’ (P3 
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which is  now t h i r d  order.  The closed-loop t r a n s f e r  funct ion f o r  t he  

sys t em configurat ion of Fig. 9 i s  given by 

K K 
X s + +  .T 
- 

(0 cp 
f + K  K K 

c p 2 s 2 + 1 _ s + +  J 
cp (P 

J s3 * ep 

rp 

Written a s  the  product of f i r s t  and second order  f ac to r s ,  t h i s  expression 

takes  the  form 

Choosing values  of a = 1.0, w = 0.5, and 5 = 0.5  w i l l  y i e l d  a ne t  

closed-loop sys t em bandwidth i n  the  order  of 0 . 1  H z  a s  required,  and a 

t r a n s i e n t  response that exh ib i t s  not more than 10-percent overshoot. 

The system ga ins  t h a t  produce t h i s  performance a r e  

cp cp CP 

6 

6 

5 

K = 1.425 X 10 
c p l  

cp2 

(P3 

K = 2.765 x 10 

K = 4.750 x 10 * 

Furthermore, s ince  the  feedback transmission is  un i ty  and the re  a r e  now 

two in t eg ra t ions  i n  the  forward path, it i s  assured t h a t  t h i s  configura- 

t i o n  w i l l  produce zero s teady-s ta te  t racking e r r o r  f o r  a ramp input .  

Since t h i s  system configurat ion s a t i s f i e s  a l l  of t he  s t a t e d  design re- 

quirements f o r  t he  au to t rack  system, i t  i s  the  configurat ion used i n  

the  computer s imulat ion of a t racking  sys t em of conventional design. 

For the  hour-angle ax is ,  the  only s i g n i f i c a n t  d i f fe rences  from the  

above ana lys i s  are the  d i f f e r e n t  values  f o r  J and f and the  var ia-  

t i o n  of J a s  a func t ion  of 9 Since changes very slowly, it is 
e 8' 

e t '  t 
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reasonable t o  ignore higher-order and cross-coupling t e r m s ,  and consider 

system performance as i f  J w e r e  constant .  To do t h i s  the  system ga ins  

are chosen t o  produce the desired system c h a r a c t e r i s t i c s  for  a nominal 

value of J and then the system c h a r a c t e r i s t i c s  are checked for  t h e  

extreme values  of J 

not necessary t o  vary the system ga ins  as a func t ion  of 'p 

acceptable  performance. Taking J t o  be 1.55 X 10 , the ga ins  that 8 
y i e l d  a = 1.0, w = 0.5, and 5 = 0 . 5  are 

0 

0' 
I f  no unacceptable v a r i a t i o n  occurs, then it is 

t o  maintain 
0'  

t 6 

0 0 0 

K - 1.160 x lo6 
6 Ke2 = 2.020 x 10 

5 Ke3 = 3.880 x 10 

01 - 

. 

Keeping the system ga ins  a t  these values  and varying J 

from a minimum of 0.6 X 10 t o  a maximum of 2.5 X 10 r e s u l t s  i n  t h e  

following range of sys t em p rope r t i e s .  For the  minimum value of J 

the  parameter values  of t he  closed-loop t r a n s f e r  funct ion a r e  

over i t s  range 0 .  
6 6 

0' 

(88) = 3.36,  we = 0.438, and se = 0.594. 
"8 

The s m a l l  decrease i n  resonant frequency indica ted  w i l l  be more than 

compensated by the  increase  i n  a hence, the  system behavior should be 

e s s e n t i a l l y  unchanged from the  nominal f o r  these condi t ions.  For t he  

maximum value of J the parameter values  of the  closed-loop t r a n s f e r  

funct ion a r e  

0; 

0' 

The s i g n i f i c a n t  v a r i a t i o n s  i n  t h i s  case a r e  t h e  reduct ions i n  a 

The reduced a 

the design value of 0 . 5  rad/sec; however, the  resonant ampl i f ica t ion  of 

approximately 2.0, a s soc ia t ed  with a damping f a c t o r  of 0.332, w i l l  com- 

pensate f o r  t h i s  bandwidth reduct ion and lead t o  a ne t  system bandwidth 

and 5, .  0 
would be expected t o  reduce the  sys t em bandwidth below 0 
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i n  t he  v i c i n i t y  of 0 .5  rad/sec.  

damping t o  lead  t o  l a rge  t r a n s i e n t  overshoots. 

a t  ae  = 0.587 w i l l  p a r t i a l l y  compensate f o r  t he  overshoot, reducing it  

from a maximum value of 30 percent t o  a maximum value of approximately 

15 percent .  

appreciably,  the  ne t  system performance w i l l  remain acceptably c lose  t o  

t he  nominal design values.  

Conversely, one would expect the low 

However, the s i n g l e  pole 

Hence, even though the  parameter values appear t o  change 

Since it  has been shown t h a t  the system performance remains s a t i s -  

6’ 
f ac to ry  over the e n t i r e  range of values  t h a t  can be assumed by J 

and t h a t  the  rate of v a r i a t i o n  is small enough t o  permit ignoring cross- 

coupling terms, it i s  the re fo re  reasonable t o  implement the system with 

j u s t  one set of f ixed  ga ins  a s  given i n  E q s .  (87). 

I t  should be noted t h a t  the  te lescope’s  angular pos i t i on  and r a t e ,  

which a r e  f e d  back through the  compensation network, w i l l  a c t u a l l y  be 

corrupted by measurement noise .  T h i s  e f f e c t  has been included i n  the 

computer s imulat ion of t he  au to t rack  system. 
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V PERFORMANCE TESTING OF TRACKING SYSTEMS 

The t racking  system conf igura t ions  proposed and analyzed i n  Secs. 

I11 and I V  have been simulated by means of a d i g i t a l  computer. T h i s  

s imulat ion permits t he  evaluat ion of performance l e v e l s  achieved by each 

of the system designs as w e l l  a s  direct comparisons of t h e i r  perfor-  

mance c a p a b i l i t i e s  under s imi l a r  operat ing condi t ions.  The program is  

set up t o  s imulate  the operat ion of the  ear th- terminal  t racking sys t em 

a s  i f  i t  were t racking an o p t i c a l  s i g n a l  o r ig ina t ing  a t  a spacecraf t  

i n  the  v i c i n i t y  of Mars. The program has been wr i t t en  i n  Fortran I V  

(Version 13) and runs on the  IBM-DCS 7040-7094 a t  the  NASA Ames Research 

Center.13 

f o r  t he  es t imator -cont ro l le r  configuration, and 0.08 seconds f o r  the  

The approximate execution t i m e  per  i t e r a t i o n  i s  0.36 seconds 

au to t racker  system. 

For the  s imulat ion tests t h a t  w e r e  conducted, two forms of system 

performance a r e  computed and p l o t t e d  versus  t i m e .  The f irst  performance 

measure p l o t t e d  is  the  angular es t imat ion  error-- the angular d i f fe rence  

between t h e  d i r e c t i o n  of s i g n a l  a r r i v a l  a s  obtained a t  the  data  readout 

po in ts  and t h e  t r u e  d i r e c t i o n  of s igna l  a r r iva l - - in  terms of the  declina- 

t i o n  and hour angles .  For the  es t imator -cont ro l le r  configuration, the  

data readouts a r e  t h e  estimates of the  spacecraf t  angles  t h a t  a r e  obtained 

from the  es t imate  of the  spacecraf t  s t a t e  [see Fig. 1 and Eqs. (5611; 

whereas f o r  the  au to t rack  configuration, the  data readout po in ts  are 

taken t o  be t h e  d i g i t a l  encoders t h a t  measure t h e  angular pos i t i ons  of 

t h e  te lescope axes (see Figs.  5 and 6 ) .  The second performance measure 

is  the  angular  t racking  error-- the angular d i f fe rence  between the  tele- 

scope a x i s  and the  d i r e c t i o n  of s i g n a l  a r r iva l - - in  both the  dec l ina t ion  

and hour-angle axes.  These p l o t s  i nd ica t e  the  performance of the  t racking  

system i n  maintaining proper poin t ing  of the  te lescope ax i s .  I t  i s  im-  

por tan t  t o  poin t  out  the d i s t i n c t i o n  between these  two performance 

measures, s ince  the  second bears on the  system's a b i l i t y  t o  maintain 

continuous communication contact  while the  first i s  pe r t inen t  t o  the  
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q u a l i t y  of the  da ta  t h a t  the  system can produce for such purposes a s  

spacecraf t  t r a j e c t o r y  determination. 

The a p r i o r i  s t a t e  estimate f;(O/O) and i ts  e r r o r  covariance P(O/O) 

are used to  i n i t i a l i z e  the  recurs ive  equations f o r  the  est imator .  Two 

d i f f e r e n t  sets of i n i t i a l  s t a t e  es t imates  z ( O / O )  of the  i n i t i a l  condi t ions 

x(0)  f o r  t he  a c t u a l  test  data,  together  with the  r e s u l t i n g  spacecraf t  

angles [ ~ s ( O / O ) ,  g s ( O / O )  and cps(0), B S ( O )  respec t ive ly]  , a r e  spec i f i ed  

i n  Table I. 

that w e r e  simulated f o r  the  es t imator -cont ro l le r  configurat ion.  

operat ion of t he  au to t racker  w a s  a l s o  simulated, using the  a c t u a l  t e s t  

data given i n  Table I .  

t he  e r r o r  i n  the  i n i t i a l  s t a t e  es t imate  defined i n  Eq. (28), and f o r  

Q(k), the  covariance of the  random dis turbance defined i n  Eq. (27), 

Cases 1 and 2 a r e  representa t ive  of t he  numerous examples P 

The 

.( 

The bes t  values for P ( O / O ) ,  the  covariance of 

w e r e  determined 

P ( O / O )  = 

experimentally t o  be 

- 
19 

5 x 10 

5 x 10 
19 

0 

lo2  
2 

10 

0 

0 

0 

0 
3 

2 x 10 
3 

2 x 10 

0 (91) 

58 



Table I 

INITIAL CONDITIONS 

4 

A c t u a l  
x(0) 

1.2000 x lo1 

1.6000 X lo1 

0 

-8.000 X 20 3 

7. 000 x lo3  

0 

-0.0711750 

0 

0.1647270 

0 

-0.0711754 

0.1647272 

Case 1 

1 1.1998 X 10 

1 1.6002 X 10 

0 

3 -8.002 x 10 

7.003 x lo3 

0 

-0.0711700 

0 

0.1647300 

-0 0712144 

0.1648185 

Case 2 
E;(O/O) 

1.2002 x l o l l  

1 1  1.5998 X 10 

0 

3 -8.002 X 10 

3 
7.003 X 10 

0 

-0.0711700 

0 

0.1647300 

-0.0711364 

0.1646358 
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The u n i t s  on these  var iances  correspond t o  those given i n  Table I .  

For an Earth-Mars mission it  is  reasonable t o  assume that the  trajectory 

of t he  spacecraf t  l ies  i n  the  plane of t he  e c l i p t i c .  Hence, x = k = 0, 

and t h e  corresponding var iances  i n  Eqs. (90) and (91) can be set equal 

t o  zero. 

3s 3s 

For t he  est imator-control ler ,  R(k), t he  covariance of t he  measure- # 

ment noise,  is  given i n  Eqs. (25) and (26).  For t h e  autotracker ,  the  

noise  introduced by image excursion and the  noise  on the  measurements of 

t he  te lescope ' s  angular pos i t i on  a r e  as given i n  Eqs. (26) .  The measure- 

ment no ises  f o r  t he  te lescope ' s  angular r a t e  are taken t o  have a var iance 
of 9 X 10-12(rad/sec) 2 . 

8 The cos t  assoc ia ted  with control ,  a s  charac te r ized  by b and b 

[ see  Eq. (41)1, determines the  performance of the  con t ro l l e r .  The best  

values  f o r  these  q u a n t i t i e s  were determined experimentally t o  be 

rp 

- 10 b = 10 
rp 

-11 b = 10 8 

The u l t imate  l i m i t a t i o n  on the  performance of t he  o p t i c a l  communica- 

t i o n  and t racking  system is  d ic t a t ed  by the  magnitude of the  atmospheric- 

induced image excursion, a s  charac te r ized  by Q and 0 . Hence, t o  

determine the  s e n s i t i v i t y  of system performance t o  image excursion, 

CY and Q w e r e  var ied  about t h e i r  nominal values of 15 X 10 rad 

(where 1 .0  a r c  sec  = 4.85 X lom6 rad ) .  

runs are presented i n  Figs .  10 through 15 f o r  the  es t imator -cont ro l le r  

(Cases 1 and 2 )  and i n  Figs .  16 through 18 f o r  t he  autotracker ,  with a 

nominal i n t e r a t i o n  i n t e r v a l  A t  = 0.25 sec.  These f igu res  ind ica t e  t h a t  

under s imi l a r  operat ing condi t ions the  performance (est imat ion and 

t racking  e r r o r s )  of t he  es t imator -cont ro l le r  i s  appreciably b e t t e r  than 

t h a t  of t he  au to t racker .  Furthermore, t he  performance o f  the  

(Pa 'a 

-6 

(Pa 'a 
The r e s u l t s  of these  computer 

* 

* 
I t  should be noted t h a t  the  r e s u l t s  f o r  t h e  es t imator -cont ro l le r  a r e  
p l o t t e d  on a s c a l e  of + lo  X rad, while t he  r e s u l t s  f o r  t h e  auto- 
t r acke r  are p l o t t e d  on a s c a l e  of k50 X rad.  
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es t imator -cont ro l le r  configurat ion is less s e n s i t i v e  t o  increases  i n  

atmospheric dis turbances than i s  the  au to t racker  system. 

the  r e s u l t s  i n  Figs.  10 through 15  f o r  Cases 1 and 2 demonstrate t h a t  

t h e  convergence p rope r t i e s  of t he  estimator a r e  e s s e n t i a l l y  independent 

of t he  a p r i o r i  s t a t e  estimate [ f o r  reasonable choices of 2(0/0)1. 

I n  addi t ion ,  

Another set of tests w e r e  conducted t o  determine the  s e n s i t i v i t y  

of estimator performance t o  the  i t e r a t i o n  i n t e r v a l  A t .  Only the  per- 

formance of t he  es t imator  was considered i n  these  computer runs, because 

i t  has been found that i t e r a t i o n  i n t e r v a l s  much i n  excess of the  nominal 

0.25 sec  introduce spurious dynamic e f f e c t s  i n t o  the  s imulat ion of the  

c o n t r o l l e r  and te lescope behavior. The es t imator  was operated a t  in te ra-  

t i o n  i n t e r v a l s  of A t  = 1 .0  second and A t  = 2.0 seconds f o r  Cases 1 and 2, 

w i t h  the  nominal no ise  condi t ions described above. The r e s u l t s  of these 

t e s t s ,  shown i n  Figs .  19 through 22, i l l u s t r a t e  t h a t  there i s  only a 

s l i g h t  degradation i n  performance f o r  increased A t .  

For t he  purpose of minimizing the system computer requirements i n  

an a c t u a l  implementation, mu l t i r a t e  operat ion should be considered, where 

t h e  i t e r a t i o n  i n t e r v a l  f o r  t he  c o n t r o l l e r  i s  set  small so  a s  t o  ensure 

smooth te lescope behavior, whi le  the  i t e r a t i o n  i n t e r v a l  of the  est imator  

i s  made l a r g e  t o  reduce the  t o t a l  computation time required.  T h i s  multi- 

r a t e  operat ion can a f fo rd  a considerable saving i n  t o t a l  computation 

t i m e  (and thus  i n  required machine speed) s ince  t h e  es t imator  present ly  

accounts f o r  approximately 95 percent of the  computation t i m e  per  

i t e r a t i o n .  
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VI SUMMARY AND CONCLUSIONS 

The research program described in this Final Report has investigated 

the control and tracking problems associated with an optical communica- 

tion system operating between an earth station and a spacecraft assumed to 

be in the vicinity of Mars. The system performance specifications as well 

as the constraints imposed by the atmospheric and space propagation en- 

vironment have been detailed, and their influences on the system design 

and performance limitations elaborated. Within this context several 

system design approaches were considered and the most promising, the 

cooperative configuration, chosen for detailed analysis. For this con- 

figuration, mathematical models of all system components were developed, 

including the relative motion of the two communication terminals, the 

dynamics of the earth-terminal receiving telescope, the optical propaga- 

tion properties of the atmosphere and free space, and the noise charac- 

teristics of the optical and mechanical measuring devices used to obtain 

control or output data from the system. 

Given this complete system specification, two design approaches were 

taken. The first, which results in the estimator-controller configura- 

tion developed in Sec. 111, is based on results from optimal linear 

estimation and control theory. The principal feature of this theory is 

that the resultant systems can be shown to derive maximum benefit from 

the a priori design information, as well as information gathered during 

the system operation. The second control design is based on classical 

servo theory, which dictates that the resulting system exhibit zero steady- 

state tracking error and that the dynamic response of the system be 

specified so as to respond to the frequency spectrum of the signal while 

affording maximum rejection of the frequency spectrum of the noise and 

disturbances. The system developed by these techniques is termed an 

autotracker and is described in Sec. IV. 

The optical communication and tracking system, employing either 

the estimator-controller or the autotracker, was simulated by means of 
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a d i g i t a l  computer so t h a t  comparative performance data  could be obtained. 

Representative cases  i l l u s t r a t i n g  the  performance obtained are shown i n  

Sec. V. I n  add i t ion  t o  assess ing  t h e  r e l a t i v e  performance of t he  

es t imator -cont ro l le r  and autotracker ,  these  s imulat ion runs w e r e  a l s o  

used t o  eva lua te  performance s e n s i t i v i t y  t o  such parameters a s  t he  

magnitude of atmospheric i n t e r f e rence  and i t e r a t i o n  t i m e  f o r  the  

computations. 

L 

On t he  bas i s  of t he  r e s u l t s  obtained during t h i s  research  pro jec t ,  

severa l  general  conclusions regarding the  deep-space o p t i c a l  communica- 

t i o n  problem can be s t a t e d .  F i r s t ,  and foremost, is  the  conclusion 

t h a t  i t  is  within the  capab i l i t y  of present  technology t o  implement an 

o p t i c a l  communication system t h a t  w i l l  provide a s i g n i f i c a n t  increase  

i n  data  r a t e  over present ly  used techniques.  Secondly, from the  simula- 

t i o n  test r e s u l t s  shown i n  Sec. V, and given the  assumption t h a t  the  

t racking  system includes a high-speed beam s t e e r e r  with a dynamic range 

of +1 a r c  minute, it must be concluded t h a t  both the  es t imator -cont ro l le r  

and the  au to t racker  system designs a r e  capable of maintaining continuous 

s igna l  contact  under the  condi t ions simulated i n  the  t e s t s .  This con- 

c lus ion  must, however, be viewed i n  the  context of the  assumptions t h a t  

lead t o  i t .  The incorporat ion of a high-speed beam steerer i n  an o p t i c a l  

system is  not common p rac t i ce  i n  the  design of l a rge  te lescopes;  there- 

fore ,  i n  t he  event t h a t  such a device is  not used, the  f i e l d  of view of 

t he  sys t em must be made l a rge  enough t o  include both the  an t i c ipa t ed  

atmospheric dis turbances and the  t racking e r r o r s .  Under these  circumstances 

the  es t imator -cont ro l le r  configurat ion,  because of i t s  smaller t racking  

e r r o r s  ( a s  shown i n  Sec. V )  o f f e r s  a d e f i n i t e  advantage i n  that the  f i e l d  

of view can be made smaller than f o r  an au to t racker  system--thus per- 

mi t t ing  enhanced communication capaci ty .  Furthermore, a s  was shown i n  

Sec.  V, t he  t racking  e r r o r  achieved by the  es t imator -cont ro l le r  configura- 

t i o n  i s  much less s e n s i t i v e  t o  increases  i n  the  atmospheric dis turbances 

than i s  t h a t  achieved by the  au to t racker ;  thus, the  es t imator -cont ro l le r  

w i l l  be capable of maintaining successful  system operat ion under more 

unfavorable atmospheric condi t ions than is  poss ib le  with the  au to t racker .  
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Impl ic i t  i n  a l l  of the  discussions and s imulat ions thus f a r  has 

been the  assumption t h a t  t h e  t racking te lescope i s  pro tec ted  from i t s  

environment by a dome s i m i l a r  t o  that commonly used with astronomical 

te lescopes.  Such p ro tec t ion  makes p l aus ib l e  the  assumption that the  

te lescope i s  not subjec t  t o  s t o c h a s t i c  torque dis turbances from such 

sources a s  wind gus t s .  Disturbances of t h i s  type present  the  au to t rack  

system designer with a dilemma. H e  would l i k e  t o  design a low band- 

width system t o  achieve good f i l t e r i n g  of the  s i g n a l  being tracked; 

however, such a sys t em w i l l  respond with l a rge  output excursions t o  

load dis turbance torques--quite l i k e l y  i n  excess of t he  dynamic range 

of any beam s t ee r ing  mechanism employed. On the  o ther  hand, i f  the  

system bandwidth is made l a rge  enough t o  reduce the  response t o  load 

dis turbances t o  an acceptable  l eve l ,  then the  f i l t e r i n g  funct ion is  

degraded and the  system output w i l l  contain a l a rge  f r a c t i o n  of the  

noise  corrupt ing the  input  s igna l .  The r e s u l t i n g  design is  therefore  ’ 

a compromise between these two opposing f ac to r s .  While the re  a r e  many 

ins tances  where such a compromise design may be adequate, it does not 

represent  t he  optimum performance that can be achieved v ia  modern design 

techniques. 

In cont ras t ,  the  es t imator -cont ro l le r  approach is  not faced with 

t h i s  dilemma s ince  t h e  t a sks  of f i l t e r i n g  the  noise-corrupted s igna l s  

and of te lescope cont ro l  are accomplished separa te ly .  The es t imator  

por t ion  of t h e  sys t em i s  designed t o  produce the  best  poss ib le  estimates 

of spacecraf t  and te lescope s t a t e  and, thus, serves  a s  a s igna l  f i l t e r .  

The c o n t r o l l e r  f o r  the  te lescope is  then operated as a pos i t i on  servo, 

following the  outputs  of t he  est imator .  Since the  c o n t r o l l e r  is  no 

longer c a l l e d  upon t o  perform a f i l t e r i n g  function, the  r e s u l t i n g  

system bandwidth can be made as l a rge  as necessary t o  adequately compen- 

sate f o r  t he  load dis turbances.  Since the  input  t o  the  c o n t r o l l e r  has 

a l ready  been f i l t e r e d  by the  est imator ,  the  performance of t h e  t racking 

system w i l l  not be degraded by t h i s  l a rge  bandwidth. Furthermore, the  

f i l t e r i n g  of the  input  s i g n a l s  t o  the  c o n t r o l l e r  w i l l  e l imina te  those 

high frequency components t ha t ,  al though they are too  high i n  frequency 

t o  d i r e c t l y  a f f e c t  the  system output,  could e x c i t e  higher order  
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resonances within the  mechanical and dr ive  systems and thus degrade 

system performance. 

In  add i t ion  t o  maintaining uninterrupted contact  between the  two 

communication t e r m i n a l s ,  t he  t racking  systems s tudied  provide angle- 

t racking  data  on the  spacecraf t  t r a j e c t o r y .  A t  t he  extremely long 

ranges of a deep-space mission, i t  i s  quest ionable  t h a t  t he  angle- 

t racking  da ta  w i l l  be competit ive with t h a t  achievable by such e x i s t i n g  

t racking  systems as range/range rate f o r  u l t imate  accuracy i n  t r a j e c t o r y  

smoothing. 

On the  o ther  hand, for near-ear th  vehic les  and during the  e a r l y  

phases of a deep-space mission, o p t i c a l  angle  t racking w i l l  prove 

valuable  f o r  p rec i se  determinations of vehic le  pos i t i on  and t r a j e c t o r y .  

Both the  au to t racker  and the  es t imator -cont ro l le r  configurat ions can 

be employed t o  obta in  t h i s  t racking  data .  A s  i l l u s t r a t e d  i n  Sec. V, the  

es t imator -cont ro l le r  achieves appreciably smaller  es t imat ion e r r o r s  

than the  au to t racker .  Subsequent processing of the  au to t rack  data can 

reduce i t s  inherent  e r ro r s ,  but i n  those cases  where real-t ime operat ion 

i s  required,  a s  i n  vehic le  guidance or t r a j e c t o r y  determination f o r  

hand-off Or in te rcept ion ,  the  es t imator -cont ro l le r  configurat ion i s  

capable of providing the  best  poss ib le  t racking data  obtainable  from 

the  input information received up t o  that t i m e .  

The r e s u l t s  of t h i s  research pro jec t ,  and the  conclusions drawn from 

them, have e s t ab l i shed  from t h e o r e t i c a l  considerat ions and s imulat ions 

t h e  f e a s i b i l i t y  and p r a c t i c a b i l i t y  of accomplishing t racking with an 

o p t i c a l  system t o  an unprecedented l e v e l  of accuracy. The next l o g i c a l  

s t e p  i n  the  development of t he  concept of o p t i c a l  communication and 

t racking sys t ems  is the  implementation, most l i k e l y  a t  an e x i s t i n g  

o p t i c a l  f a c i l i t y ,  of an o p t i c a l  t racking s y s t e m  employing both a high- 

speed beam steerer and an  es t imator -cont ro l le r  system configurat ion.  

Experiments simulating the  condi t ions of a deep-space o p t i c a l  communica- 

t i o n s  mission conducted between such a f a c i l i t y  and a cooperative 

s a t e l l i t e  would serve t o  subs t an t i a t e  the  conclusions drawn from the  

t h e o r e t i c a l  considerat ions.  Furthermore, t h i s  same f a c i l i t y  could 
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a l s o  be employed t o  eva lua te  o p t i c a l  t racking system c a p a b i l i t i e s  as 

sources of t racking data  for t r a j e c t o r y  or o r b i t  determination purposes. 
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of Stanford Research Institute for the Electronics Research Center of the 
National Aeronautics and Space Administration on Contract NAS12-59 from 1 October 
1966 to 30 September 1967 are described in this Final Report. The research 
program has investigated the control and tracking problems associated with an 
optical communication system operating between the earth and a spacecraft in 
the vicinity o f  Mars. For the system configuration studied, mathematical models 
of all system components are developed including the relative motion of the two 
communication terminals, the dynamics of the earth-terminal receiving telescope, 
the optical propagation properties of the atmosphere and free space, and a 
statistical description of the optical and mechanical measuring devices used 
to obtain control or  output data from the system. 

Two design approaches to this problem are taken. The first, which is 
based on results from optimal linear estimation and control theory, results 
in the estimator-controller configuration. The second design employs classi- 
cal servo theory and yields the autotracker system. 
and tracking system, employing either the estimator-controller or the autotracker, 
was simulated by means of a digital computer. 
relative performance of these two system designs, computer simulations were also 
used to evaluate performance sensitivity to such parameters as the magnitude of 
atmospheric interference and iteration time for  the computations. 

The optical communication 

In addition to assessing the 

Security Classification S/N 010 1 - 807- 680 1 



DD FORM 1473 

13. ABSTRACT (Continued) 

The simulation tests demonstrate that although, for 
mental conditions, both the estimator-controller and the 
form satisfactorily, the estimator-controller is able to 

nominal environ- 
autotracker per- 
ma int a in 

satisfactory performance under conditions that render the autotracker 
unusable. 

On the basis of results obtained during this research project, it 
can be concluded that it is within the capability of present technology 
to implement a deep-space optical communication system that will provide 
a significant increase in data rate over presently used techniques. 
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